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1. Synthesizing Stochastic Logic

In class, we discussed the paradigm of logical computation on stochastic bit

streams It is based on a stochastic representation of data: each real-valued

number x (0 ≤ x ≤ 1) is represented by a sequence of random bits, each of

which has probability x of being one and probability 1 − x of being zero.

In this paradigm, since we are mapping probabilities to probabilities, we can

only implement functions that map the unit interval [0, 1] onto the unit interval

[0, 1]. Based on the constructs for multiplication and scaled addition shown in

Figures 1 and 2, we can readily implement polynomial functions of a specific

form, namely polynomials with non-negative coefficients that sum up to a value

no more than one:

g(t) =
n∑

i=0

ait
i

where, for all i = 0, . . . , n, ai ≥ 0 and
∑n

i=0 ai ≤ 1.
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Figure 1: Multiplication on stochastic bit streams with an AND gate. Here the inputs are

6/8 and 4/8. The output is 6/8× 4/8 = 3/8, as expected.

For example, suppose that we want to implement the polynomial g(t) = 0.3t2 +

0.3t + 0.2 through logical computation on stochastic bit streams. We first de-

compose it in terms of multiplications of the form a · b and scaled additions of

the form sa+ (1 − s)b, where s is a constant:

g(t) = 0.8(0.75(0.5t2 + 0.5t) + 0.25 · 1).
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Figure 2: Scaled addition on stochastic bit streams, with a multiplexer (MUX). Here the

inputs are 1/8, 5/8, and 2/8. The output is 2/8× 1/8+ (1− 2/8)× 5/8 = 4/8, as expected.

Then, we reconstruct it with the following sequence of multiplications and scaled

additions:

w1 = t · t,
w2 = 0.5w1 + (1 − 0.5)t,

w3 = 0.75w2 + (1 − 0.75) · 1,

w4 = 0.8 · w3.

The circuit implementing this sequence of operations is shown in Figure 3.

In the figure, the inputs are labeled with the probabilities of the bits of the

corresponding stochastic streams. Some of the inputs have fixed probabilities

and the others have variable probabilities t. Note that the different lines with

the input t are each fed with independent stochastic streams with bits that have

probability t.
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Figure 3: Computation on stochastic bit streams implementing the polynomial g(t) =

0.3t2 + 0.3t+ 0.2.

What if the target function is a polynomial that is not decomposable this way?

Suppose that it maps the unit interval onto the unit interval but it has some

coefficients less than zero or some greater than one. For instance, consider the

polynomial g(t) = 3
4
− t+ 3

4
t2. It is not apparent how to construct a network of

stochastic multipliers and adders to implement it.
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In class, we discsused a general method for synthesizing arbitrary univariate

polynomial functions on stochastic bit streams. A necessary condition is that

the target polynomial maps the unit interval onto the unit interval. Our major

contribution is to show that this condition is also sufficient: we provide a con-

structive method for implementing any polynomial that satisfies this condition.

Our method is based on some novel mathematics for manipulating polynomials

in a special form called a Bernstein polynomial.

We illustrate the basic steps of our synthesis method with the example of g(t) =
3
4
− t+ 3

4
t2.

(a) Convert the polynomial into a Bernstein polynomial with all coefficients

in the unit interval:

g(t) =
3

4
· [(1 − t)2] +

1

4
· [2t(1 − t)] +

1

2
· [t2].

Note that the coefficients of the Bernstein polynomial are 3
4
, 1
4

and 1
2
, all

of which are in the unit interval.

(b) Implement the Bernstein polynomial with a multiplexing circuit, as shown

in Figure 4. The block labeled “+” counts the number of ones among its

two inputs; this is either 0, 1, or 2. The multiplexer selects one of its three

inputs as its output according to this value. Note that the inputs with

probability t are each fed with independent stochastic streams with bits

that have probability t.

t

MUX

3/4

g(t)

0

1

2

t

1/4

1/2

Figure 4: A generalized multiplexing circuit implementing the polynomial g(t) = 3
4−t+ 3

4 t
2.
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Problem

Implement the following polynomial

1

11

(
1 − t+ 2t2 − 2t3 + 3t4 − 3t5

)
this way.

Demonstrate how the circuit works on the following input values:

• X = 0

• X = 0.25

• X = 0.5

• X = 0.75

• X = 1

In each case, track probabilities through the circuit that you drew.
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2. Input-Dependent Probability of Failure

A pervasive problem for digital nano-circuitry is coping with defects and fail-

ures. For most nanoscale processes, the devices and components are inherently

unreliable. They may exhibit significant variations in their operating parame-

ters. Worse, they may fail intermittently or permanently.

In this problem, you will investigate analysis techniques for digital circuits char-

acterized by logic gates that compute probabilistically: with some probability,

each gate produces the incorrect result; with one minus this probability, it pro-

duces the correct result.

Consider the two circuits:

Note that both circuits implement the same Boolean function:

(a+ b)c

Suppose that each gate produces the incorrect result (i.e., the complement of

the correct Boolean value) with probability ε. The probability that the circuits

produce the incorrect results are:

The failure probability depends on the specific input combination. For some

input combinations, Circuit A has a lower probability of failure; for others

Circuit B does. The following table gives the failure probabilities for a specific

value of ε.
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Problem

For the circuit in Figure 5, suppose that each gate produces the incorrect result

(i.e., the complement of the correct Boolean value) with the same probability

ε. For each input assignment of x, y and z compute the probability of obtaining

an incorrect result at the outputs c and s.

x

y

x

y

z

z

c

s

AND

AND

OR

XOR

XOR

g1

g3

g2

g5

g4

Figure 5: A full adder.
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3. Coding for Lattices of Four-Terminal Switches

In this problem, we’ll consider a new model, applicable to novel technologies

such as nanowire crossbar arrays: four-terminal switches. An example is shown

in the top part of Figure 6. The four terminals of the switch are all either

mutually connected (ON) or disconnected (OFF). We consider networks of four-

terminal switches arranged in rectangular lattices. An example is shown in the

bottom part of Figure 6. Each switch is controlled by a Boolean literal. If

the literal takes the value 1 (0) then corresponding switch is ON (OFF). The

Boolean function for the lattice evaluates to 1 iff there is a closed path between

the top and bottom edges of the lattice. The function is computed by taking

the sum of the products of the literals along each path. These products are

x1x2x3, x1x2x5x6, x4x5x2x3, and x4x5x6.

x4

x5

x6

x1

x2

x3

Figure 6: Four-terminal switching network implementing the Boolean function x1x2x3 +

x1x2x5x6 + x2x3x4x5 + x4x5x6.

Problem

Implement the following functions in rectangular lattices of four-terminal switches.

There should be a closed path from the top to bottom plates if and only if the

Boolean function evaluates to 1. Use the smallest lattice possible. (See “ Logic

Synthesis for Switching Lattices Mustafa Altun and Marc Riedel, IEEE Trans-

actions on Computers, 2011.)
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(a) Function 1:

a(b+ c(d+ e))

(b) Function 2:

x1x2x3 + x̄1x̄2x̄3 + x1x̄2 + x2x̄3

(c) Function 3:

ab+ bc+ cd+ ef

(d) Function 4:

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

(e) Function 5:

x1x2 ⊕ x2x3 ⊕ x3x4 ⊕ x4x5 ⊕ x5x1

Here + denotes OR; multiplication represents AND; ⊕ denotes Exclusive-OR;

a over-bar represents NOT.
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4. Percolation

Percolation theory is a rich mathematical topic that forms the basis of explana-

tions of physical phenomena such as diffusion and phase changes in materials.

It tells us that in media with random local connectivity, there is a critical

threshold for global connectivity: below the threshold, the probability of global

connectivity quickly drops to zero; above it, the probability quickly rises to one.

Broadbent and Hammersley described percolation with the following metaphor-

ical model. Suppose that water is poured on top of a large porous rock. Will

the water find its way through holes in the rock to reach the bottom? We can

model the rock as a collection of small regions each of which is either a hole

or not a hole. Suppose that each region is a hole with independent probability

p1 and not a hole with probability 1 − p1. The theory tells us that if p1 is

above a critical value pc, the water will always reach the bottom; if p1 is below

pc, the water will never reach the bottom. The transition in the probability of

water reaching bottom as a function of increasing p1 is extremely abrupt. For

an infinite size rock, it is a step function from 0 to 1 at pc.

In two dimensions, percolation theory can be studied with a lattice, as shown

in Figure 7(a). Here each site is black with probability p1 and white with

probability 1−p1. Let p2 be the probability that a connected path of black sites

exists between the top and bottom plates. Figure 7(b) shows the relationship

between p1 and p2 for different square lattice sizes. Percolation theory tells us

that with increasing lattice size, the steepness of the curve increases. (In the

limit, an infinite lattice produces a perfect step function.) Below the critical

probability pc, p2 is approximately 0 and above it p2 is approximately 1.

Suppose that each site of a percolation lattice is a four-terminal switch controlled

by the same literal x1. Also suppose that each switch is independently defective

with the same probability. Defective switches are represented by white and

black sites while the switch is supposed to be ON and OFF, respectively. Let’s

analyze the cases x1 = 0 and x1 = 1. If x1 = 0 then each site is black with the

defect probability, and the defective black sites might cause an error by forming

a path between the top and bottom plates. In this case, p1 and p2 described in

the percolation model correspond to the defect probability and the probability

of an error in top-to-bottom connectivity, respectively. If x1 = 1 then each site

is white with the defect probability and the defective white sites might cause an

error by destroying the connection between the top and bottom plates. In this

case, p1 and p2 in the percolation model correspond to 1−(defect probability)

and 1−(probability of an error in top-to-bottom connectivity), respectively. The
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Figure 7: (a): Percolation lattice with random connections; there is a path of black

sites between the top and bottom plates. (b) p2 versus p1 for 1 × 1, 2 × 2, 6 × 6,

24 × 24, 120 × 120, and infinite-size lattices.

relationship between p1 and p2 is shown in Figure 8.
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Figure 8: Non-linearity through percolation in random media.
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Problem

Compute or estimate the critical thresholds for percolation in the following

models.

(a) Suppose you have a graph consisting of n vertices. Each vertex has a

collection of m neighbors (randomly chosen from the total set of n vertices).

It is connected to each neighbor with an edge with probability p. Consider

connectivity between a randomly chosen specific pair of vertices, A and B.

Consider the probability that they are connected as a function of n,m and

p. What is the critical threshold for percolation?

(b) Consider the following scenario for an ad-hoc peer-to-peer mobile network.

There is a cell phone tower located in the center of some geographical

area. There are n mobile users located at random locations with a r

kilometer radius of the tower. Each user’s phone can communicate with

another user or with the tower if they are within q kilometers. Consider the

probability that every user can communicate (directly or via a sequence

of hops through other users) with the tower as a function of n, r and q.

What is the critical threshold for percolation?


