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ABSTRACT
As integrated circuit technology plumbs ever greater depths
in the scaling of feature sizes, maintaining the paradigm of
deterministic Boolean computation is increasingly challeng-
ing. Indeed, mounting concerns over noise and uncertainty
in signal values motivate a new approach: the design of
stochastic logic, that is to say, digital circuitry that pro-
cesses signals probabilistically, and so can cope with errors
and uncertainty. In this paper, we present a general method-
ology for synthesizing stochastic logic for the computation of
polynomial arithmetic functions, a category that is impor-
tant for applications such as digital signal processing. The
method is based on converting polynomials into a particu-
lar mathematical form – Bernstein polynomials – and then
implementing the computation with stochastic logic. The
resulting logic processes serial or parallel streams that are
random at the bit level. In the aggregate, the computation
becomes accurate, since the results depend only on the pre-
cision of the statistics. Experiments show that our method
produces circuits that are highly tolerant of errors in the
input stream, while the area-delay product of the circuit is
comparable to that of deterministic implementations.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles—Combinational Logic,
Stochastic Logic; B.8.1 [Performance and Reliability]:
Reliability, Testing and Fault-Tolerance

General Terms
Design, Performance, Reliability

Keywords
Stochastic Logic, Probabilistic Logic, Polynomial Arithmetic

1. INTRODUCTION
The successful paradigm for integrated circuit design has

been to maintain a sharp boundary in abstraction between
the physical and logical layers. From the logic level up, the
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computation consists of a deterministic sequence of zeros
and ones. The precise Boolean functionality of a circuit is
prescribed; it is up to the physical layer to produce voltage
values that can be interpreted as the exact logical values
that are called for. This abstraction is firmly entrenched
yet costly: variability, uncertainty, noise – all must be com-
pensated for through ever more complex design and manu-
facturing. As technology continues to scale, with mounting
concerns over noise and uncertainty in signal values, the cost
of the abstraction is becoming untenable.

We are developing a framework for digital IC design based
on the concept of stochastic logic. This paradigm has been
known in the literature for many years [7]. Instead of com-
puting with deterministic signals, operations at the logic
level are performed on random serial or parallel bit streams.
The streams are digital, consisting of zeros and ones; they
are processed by ordinary logic gates, such as AND and
OR. However, they convey values through the statistical dis-
tribution of the logical values. Real values in the interval
[0, 1] correspond to the probability of occurrence of logical
one versus logical zero in an observation interval. In this
way, computations in the deterministic Boolean domain are
transformed into probabilistic computations in the real do-
main.

Stochastic logic has the advantage that basic arithmetic
operations can be performed with simple logic circuits [3].
It suffers from small estimation errors due to the inherent
variance in the stochastic bit streams; however, this does
not hinder its applications in areas like artificial neural net-
works and image processing where some inaccuracy can be
tolerated [1, 2, 5]. Previous work has shown how basic arith-
metic operations like multiplication, addition, and division
can be implemented with stochastic logic [3, 8, 10]. In this
work, we study the topic more broadly.

First, we present a result in analysis. In Section 2, we
show that the stochastic behavior obtained from any com-
binational circuit with random Boolean inputs corresponds
to the computation of a multivariate polynomial of a spe-
cific form (one with integer coefficients and with the degree
of each variable at most 1). Next, we present a methodol-
ogy for synthesis. In Section 3, we describe how to imple-
ment arbitrary univariate polynomials with stochastic logic.
These are obtained from multivariate polynomials by asso-
ciating some of the inputs with independent copies of a sin-
gle random variable and fixing others to be real constants.
The synthesis method is based on converting the polynomi-
als into a particular mathematical form, namely Bernstein
polynomials.

Our approach is applicable for polynomial-arithmetic cir-
cuits that must cope with noise and uncertainty in their in-
puts. If noise-related faults produce random bit flips in the
input streams, these result in fluctuations in the statistics;
accuracy can be regained through increased redundancy. In
Section 4, we present experimental results on both the mea-



surements of the cost and the error-tolerance of the resulting
polynomial-arithmetic circuits. These results show that our
method produces circuits that are highly tolerant of errors,
while the area-delay product of the circuit is comparable to
that of deterministic implementations.

2. STOCHASTIC LOGIC
Our approach is based on a novel view of how to design

circuits characterized by noise, variation and uncertainty:
instead of transforming Boolean values into Boolean values,
such circuits transform probability values into probability val-
ues. The inputs to the circuit are random Boolean variables;
the outputs are also random Boolean variables. The com-
putation transforms a probability distribution on its inputs
to one on its outputs.

2.1 Mathematical Model
In this work, we only consider combinational circuitry.

We call combinational logic with random Boolean inputs
stochastic logic.

Assume that a combinational circuit implements the Boolean
function y = f(x1, x2, . . . , xn). Let X1, X2, . . . , Xn be n in-
dependent random variables, each with a Bernoulli distribu-
tion, and assume that the probability of a logical one for Xi

is pXi . We write P (Xi = 1) = pXi and P (Xi = 0) = 1−pXi .
With these random variables as inputs, the output is also

a random variable Y = f(X1, X2, . . . , Xn) with a Bernoulli
distribution. Let the probability of a logical one for Y be
pY . We write P (Y = 1) = pY and P (Y = 0) = 1− pY .

Evidently, pY is uniquely determined by the given n-tuple
(pX1 , . . . , pXn). In fact, pY is given by an integer-coefficient
multivariate polynomial on the arguments pX1 , . . . , pXn . To
see this, first note that pY is the sum of the probability of
occurrence of all combinations of input values for which the
Boolean function evaluates to 1. That is,

pY = P (Y = 1)

=
X

x1,...,xn:
f(x1,...,xn)=1

P (X1 = x1, X2 = x2, . . . , Xn = xn).

Since X1, X2, . . . , Xn are independent, we further have

pY =
X

x1,...,xn:
f(x1,...,xn)=1

 
nY

k=1

P (Xk = xk)

!
. (1)

Since P (Xi = xi) is either pXi or 1− pXi , depending on the
value of xi in the given combination, it is easily seen that pY

is a multivariate polynomial with arguments pX1 , pX2 , . . . , pXn .
Moreover, if we expand Equation (1) into a power form, each
product term has an integer coefficient and the degree of
each variable in that term is less than or equal to 1.

Thus, we have the following theorem describing the gen-
eral form of any function that can be computed by stochastic
logic.

Theorem 1
Stochastic logic computes a multivariate polynomial of the
form

pY = F (pX1 , pX2 , . . . , pXn)

=

1X
i1=0

· · ·
1X

in=0

 
αi1...in

nY
k=1

p
ik
Xk

!
, (2)

where the αi1...in ’s are integer coefficients. �

As an example, consider the computation performed by a
multiplexer, shown in Figure 2(b). The Boolean function of

the multiplexer is

y = f(x1, x2, s) = (x1 ∧ s) ∨ (x2 ∧ ¬s),

where ∧ means logical AND, ∨ means logical OR, and ¬
means logical negation. By the definition of pY , we have

pY = P (X1 = 1, X2 = 0, S = 1) + P (X1 = 1, X2 = 1, S = 1)

+ P (X1 = 0, X2 = 1, S = 0) + P (X1 = 1, X2 = 1, S = 0)

= pX1(1− pX2)pS + pX1pX2pS

+ (1− pX1)pX2(1− pS) + pX1pX2(1− pS)

= pX2 + pX1pS − pX2pS ,

(3)

which confirms that pY is an integer-coefficient multivariate
polynomial on the arguments pX1 , pX2 , and pS . The degree
of each variable in each product term is less than or equal
to 1.

2.2 Implementation
Given a combinational circuit implementing a Boolean

function y = f(x1, x2, . . . , xn), stochastic logic is imple-
mented as follows. We generate n independent stochastic
bit streams X1, X2, . . . , Xn, each consisting of N bits. Each
bit in the stream Xi equals 1 with independent probabil-
ity pXi . The stream is fed into the corresponding input
xi. Thus, in a statistical sense, each bit stream represents a
random Boolean variable. In this way, when we measure the
rate of the occurrence of 1 in the output bit stream, it gives
us an estimate of pY . If the bit stream is sufficiently long,
this estimate becomes accurate. We assume that the input
and the output of the circuit are directly usable in this form.
For instance, in sensor applications, analog voltage discrimi-
nating circuits might be used to transform real-valued input
and output values into and out of probabilistic bit streams.

These bit streams may be serial or parallel. In serial
streams, the random bits arrive sequentially in time. For
parallel streams, we make N identical copies of the combi-
national circuit and feed independent random bits to each
copy simultaneously. The choice between serial and parallel
stochastic logic translates into a trade-off between time and
area.

Figure 1 illustrates a serial implementation with two in-
puts and one output. The inputs and output are stochastic
bit streams that are 8 bits in length. For the output, there
are four 1’s out of a total of 8 bits. Thus, the estimate is
pY = 4/8 = 0.5.

1 0 1 0 1 0 1 1

0 1 1 0 1 0 0 1
Circuit

0 0 1 1 0 1 0 1

Figure 1: A serial implementation of stochastic logic

with inputs and outputs as serial bit streams.

While the method entails redundancy in the encoding of
signal values, complex operations can be performed using
simple logic.

• Multiplication: consider a two-input AND gate, shown
in Figure 2(a). Let its inputs be x1 and x2. Then, we
have

pY = P (X1 = 1, X2 = 1) = pX1 · pX2 .

Thus, the AND gate computes the product.

• Scaled Addition: consider a two-input multiplexer,
shown in Figure 2(b). Its inputs are x1 and x2 and its
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Figure 2: Implementation of multiplication and scaled

addition.

selecting input is s. From Equation (3), we have

pY = pSpX1 + (1− pS)pX2 ,

which corresponds to scaled addition.

3. SYNTHESIS OF STOCHASTIC LOGIC
FOR POLYNOMIAL ARITHMETIC

Stochastic logic generally implements a special type of
multivariate polynomial on input arguments, as was shown
by Theorem 1. If we associate some of the pXi ’s of the
polynomial F (pX1 , pX2 , . . . , pXn) in Equation (2) with real
constants in the unit interval and the others with a common
variable t, then the function F becomes a real-coefficient uni-
variate polynomial g(t). For example, if we set pX1 = 0.2,
pX2 = 0.8, and pS = t in Equation (3), then we get g(t) =
0.8 − 0.6t. With different choices of the original Boolean
function f and different settings of the probabilities pXi ’s,
we get different polynomials g(t).

In many applications, we need to perform a specific poly-
nomial computation. If given an arbitrary polynomial, how
can we synthesize stochastic logic to implement this compu-
tation? In this work, we propose a synthesis method that
entails converting polynomials from a general power-form
representation into a specific form, called Bernstein polyno-
mials [9].

3.1 Bernstein Polynomials

Definition 1
The family of n+ 1 polynomials in the form

Bn
i (t) =

 
n

i

!
ti(1− t)n−i, i = 0, . . . , n

are called Bernstein basis polynomials of degree n.

Definition 2
A linear combination of Bernstein basis polynomials of de-
gree n

Bn(t) =

nX
i=0

bni B
n
i (t) (4)

is a Bernstein polynomial of degree n. The bni ’s are called
Bernstein coefficients.

Polynomials of interest are usually represented in power
form. We can convert a power-form polynomial of degree n,
g(t) =

Pn
i=0 a

n
i t

i, into a Bernstein polynomial of degree n
as g(t) =

Pn
i=0 b

n
i B

n
i (t). The conversion from power-form

coefficients an
i to Bernstein coefficients bni is described in [6]:

bni =

iX
j=0

`
i
j

´`
n
j

´an
j , 0 ≤ i ≤ n. (5)

Generally, a power-form polynomial of degree n can be
converted into an equivalent Bernstein polynomial of degree
greater than or equal to n. The coefficients of a Bernstein

polynomial of degree m+1 (m ≥ n) can be derived from the
Bernstein coefficients of an equivalent Bernstein polynomial
of degree m. Again, this is described in [6]:

bm+1
i =

8><>:
bm0 i = 0

(1− i
m+1

)bmi + i
m+1

bmi−1 1 ≤ i ≤ m
bmm i = m+ 1

(6)

3.2 Stochastic Logic Computing Bernstein
Polynomials with Coefficients in the Unit
Interval

If all the coefficients of a Bernstein polynomial are in the
unit interval, i.e., 0 ≤ bni ≤ 1, for all 0 ≤ i ≤ n, then we can
build stochastic logic to implement it. Figure 3 shows the
block diagram of the circuit.

Decoding

Block Multiplexing

Block
y

s0...n
x1...n

z0...n

n n+1

n+1

Figure 3: Stochastic logic computing a Bernstein poly-

nomial with coefficients in the unit interval.

The decoding block in Figure 3 has n inputs x1, x2, . . . , xn

and n+ 1 outputs s0, s1, . . . , sn. If i (0 ≤ i ≤ n) out of the
n inputs of the decoding block are logical 1, then si is set
to 1 and the other outputs are set to 0. Figure 4 gives the
implementation of the decoding block with 8 inputs. The
eight inputs are grouped into 4 pairs and each pair is fed
into a 1-bit adder, which gives a 2-bit sum as the output.
The 4 sets of outputs of the 1-bit adder are further grouped
into 2 pairs and each pair is fed into a 2-bit adder, which
gives a 3-bit sum as the output. The pair of outputs of
the 2-bit adder are fed into a 3-bit adder, which gives a 4-
bit sum as the output. Finally, the 4-bit sum is fed into a
4-to-9 decoder. Given an input binary number equal to k
(0 ≤ k ≤ 8), the decoder has its k-th output set to 1 and its
other outputs set to 0. The output of the decoder gives the
output signal si’s. A decoding block with n inputs can be
implemented in a similar way.

1-bit
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1-bit
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1-bit
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2-bit
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4 9

Figure 4: The implementation of the decoding block.

Assume that a k-bit adder has area and depth both pro-
portional to k. Since there are no more than dn/2e 1-bit
adders, no more than dn/4e 2-bit adders, and so on, the area
complexity of the adder tree in the decoding block with n
inputs is

Aar(n) ≤
dlog2 neX

i=1

O(1)i
l n

2i

m
= O(n),



and the depth complexity of the adder tree is

Dar(n) =

dlog2 neX
i=1

O(1)i = O(lg2 n).

The decoder in the decoding block with n inputs is a
dlog2(n + 1)e-to-n decoder. Assume that we use fanin-2
gates. Then, the area complexity of the decoder is Adr(n) =
O(n); the depth complexity is Ddr(n) = O(lgn).

The outputs of the decoding block are further fed into a
multiplexing block, as shown in Figure 3, and act as the
selecting signals. The data signals of the multiplexing block
consist of n+ 1 inputs z0, . . . , zn. The Boolean logic of the
multiplexing block is

y =

n_
i=0

(zi ∧ si) , (7)

which means that the output of the multiplexing block y is
set to be the input zi if si = 1. The area complexity of the
multiplexing block is Amb(n) = O(n); the depth complexity
is Dmb(n) = O(lgn). (Again, we are assuming that we are
using fanin-2 gates.) Thus, the area complexity of the whole
circuit is A(n) = Aar(n) + Adr(n) + Amb(n) = O(n); the
depth complexity is D(n) = Dar(n) + Ddr(n) + Dmb(n) =
O(lg2 n).

Let X1, . . . , Xn be n independent Boolean random vari-
ables that are 1 with probability pXi = t (1 ≤ i ≤ n). Feed
these signals to the corresponding inputs of the decoding
block. Let Si denote the corresponding random output of
the decoding block. Since si is set to 1 if and only if i out
of n inputs of the decoding block are 1, the probability that
Si is 1 is

P (Si = 1) =

 
n

i

!
ti(1− t)n−i = Bn

i (t), 0 ≤ i ≤ n. (8)

Let Z0, . . . , Zn be n+1 independent Boolean random vari-
ables that are 1 with probability pZi = bni (0 ≤ i ≤ n). Feed
these signals to the corresponding data inputs of the multi-
plexing block. Notice that we can set the probability value
to be bni because we assume that 0 ≤ bni ≤ 1. Let Y denote
the output random Boolean variable. The probability that
Y is 1 is

pY = P (Y = 1) =

nX
i=0

(P (Y = 1|Si = 1)P (Si = 1)) . (9)

Since when Si = 1, Y equals Zi, we have

P (Y = 1|Si = 1) = P (Zi = 1) = bni . (10)

Thus, from Equations (4), (8), (9), and (10), we have

pY =
nX

i=0

bni B
n
i (t) = Bn(t), (11)

which means that the circuit in Figure 3 with specific ran-
dom variables as inputs implements the given Bernstein poly-
nomial with coefficients in the unit interval. Thus, we have
the following theorem.

Theorem 2
If all the coefficients of a Bernstein polynomial are in the
unit interval, i.e., 0 ≤ bni ≤ 1, for 0 ≤ i ≤ n, then we can
design stochastic logic to compute the Bernstein polynomial.
�

3.3 Synthesis of Stochastic Logic to Compute
Power-Form Polynomials

A polynomial is generally represented in a power form. If
it can be converted into a Bernstein polynomial with coef-
ficients in the unit interval, then the preceding section tells
us how to implement it with stochastic logic. So what kind
of polynomials can be represented as Bernstein polynomials
with coefficients in the unit interval? The following theorem
gives the answer.

Theorem 3
If g(t) is a polynomial such that

1. g(t) is identically equal to 0 or to 1, or

2. g(t) is strictly greater than 0 and less than 1, for 0 <
t < 1, and both g(0) and g(1) are greater than or equal
to 0 and less than or equal to 1, i.e., 0 < g(t) < 1, ∀t ∈
(0, 1) and 0 ≤ g(0), g(1) ≤ 1,

then g(t) can be converted into a Bernstein polynomial of
degree m with coefficients 0 ≤ bmi ≤ 1 (i = 0, 1, . . . ,m). �

We omit the proof.
We should note here that the degree of the equivalent

Bernstein polynomial with coefficients in the unit interval
may be greater than the degree of the original polynomial.
For example, consider the polynomial g(t) = 3t − 8t2 + 6t3

of degree 3, satisfying the condition g(t) ∈ (0, 1), ∀t ∈ (0, 1)
and g(0) = 0, g(1) = 1. Since

g(t) = B3
1(t)− 2

3
B3

2(t) +B3
3(t) =

3

4
B4

1(t) +
1

6
B4

2(t)

− 1

4
B4

3(t) +B4
4(t) =

3

5
B5

1(t) +
2

5
B5

2(t) +B5
5(t),

the degree of the equivalent Bernstein polynomial with co-
efficients in the unit interval is 5.

Based on Theorems 2 and 3, we have the following corol-
lary, which gives a sufficient condition:

Corollary 1
If g(t) is a polynomial such that

1. g(t) is identically equal to 0 or to 1, or

2. g(t) is strictly greater than 0 and less than 1, for 0 <
t < 1, and both g(0) and g(1) are greater than or equal
to 0 and less than or equal to 1, i.e., 0 < g(t) < 1, ∀t ∈
(0, 1) and 0 ≤ g(0), g(1) ≤ 1,

then the computation of this polynomial can be implemented
by stochastic logic. �

This condition is actually necessary as well. Since the
input argument t and the polynomial evaluation g(t) corre-
spond to probability values in stochastic logic, we require
that 0 ≤ g(t) ≤ 1, when 0 ≤ t ≤ 1. Moreover, it can be
shown that if g(t) is not identically equal to 0 or to 1 and
there exists a 0 < t′ < 1 such that g(t′) = 0 or 1, then we
cannot build stochastic logic to compute the polynomial.

If we are given a power-form polynomial g(t) =
Pn

i=0 a
n
i t

i,
which satisfies the condition given in Corollary 1, then we
can synthesize stochastic logic to compute the polynomial
in the following steps:

1. Let m = n. Get bm0 , b
m
1 , . . . , b

m
m from an

0 , a
n
1 , . . . , a

n
n by

Equation (5).

2. Check to see if 0 ≤ bmi ≤ 1, for all i = 0, 1, . . . ,m. If
so, go to step 4.

3. Let m = m+ 1. Calculate bm0 , b
m
1 , . . . , b

m
m from

bm−1
0 , bm−1

1 , . . . , bm−1
m−1 based on Equation (6). Go to

step 2.

4. Build the stochastic logic shown in Section 3.2 to im-
plement the Bernstein polynomialBm(t) =

Pm
i=0 b

m
i B

m
i (t).



4. EXPERIMENTAL RESULTS
In our experiments, we first compare the hardware cost

of deterministic digital implementations to that of stochas-
tic implementations. Then, we compare the performance of
these two implementations on noisy input data.

4.1 Hardware Comparison
In a deterministic implementation of polynomial arith-

metic, the data is generally encoded as a binary radix. We
assume that the data consists of M bits, so the resolution of
the computation is 2−M .

A polynomial g(t) =
Pn

i=0 a
n
i t

i can be factorized as g(t) =
an
0 + t(an

1 + t(an
2 + · · · + t(an

n−1 + tan
n))). With such a fac-

torization, we can evaluate the polynomial in n iterations.
In each iteration, a single addition and a single multiplica-
tion are needed. Hence, for such an iterative calculation, the
hardware consists of an adder and a multiplier.

We build the M -bit multiplier based on the logic design of
the ISCAS’85 circuit C6288, given in the benchmark as 16
bits [11]. The C6288 circuit is typical of the genre, built with
carry-save adders. It consists of 240 full- and half-adder cells
arranged in a 15× 16 matrix. Each full adder is realized by
9 NOR gates. Incorporating the M -bit adder into the adder
matrix of the M -bit multiplier and optimizing it, the circuit
requires 10M2 − 4M − 9 gates; these are inverters, fanin-2
AND gates, fanin-2 OR gates, and fanin-2 NOR gates. The
critical path of the circuit passes through 12M − 11 logic
gates.

We build the implementation computing the Bernstein
polynomial of degree n based on the circuit structure shown
in Figure 3. Table 1 shows the area A(n) and delay D(n)
of our stochastic implementation for Bernstein polynomials
of degree n = 3, 4, 5, and 6. Each circuit is composed of
the same four types of gates that we used in the determin-
istic implementation. For each specific value of n, we also
properly designed the adder tree shown in Figure 4. For
example, for n = 3, we used a full adder to construct the
adder tree, since a full adder takes 3 inputs and gives a 2-bit
sum. When characterizing the area and delay, we assumed
that the operation of each logic gate requires unit area and
unit delay.

Table 1: The area and delay of a single copy of stochastic

logic computing Bernstein polynomials of degree 3, 4, 5,

and 6.

degree n of

Bern. poly.
area A(n) delay D(n)

3 22 10
4 40 17
5 49 20
6 58 20

As stated in Section 2.2, the result of the stochastic com-
putation is obtained as the fractional weight of the 1’s in
the output bit stream. Hence, the resolution of the compu-
tation by a bit stream of N bits is 1/N . Thus, in order to
get the same resolution as the deterministic implementation,
we need N = 2M . Therefore, we need 2M cycles to get the
result when using a serial implementation; alternatively, we
need 2M copies when using a parallel implementation.

As a measure of hardware cost, we compute the area-delay
product. Note that a serial implementation of stochastic
logic takes less area and more delay; a parallel implemen-
tation takes more area and less delay. In both cases, the
area-delay product is the same.

The area-delay product of the deterministic implementa-
tion computing a polynomial of degree n is (10M2 − 4M −
9)(12M − 11)n, where n accounts for the n iterations in the

implementation. The area-delay product of the stochastic
implementation computing the Bernstein polynomial of de-
gree n is A(n)D(n)2M – no matter whether implemented
serially or in parallel – where A(n) and D(n) are the area
and delay of a single copy of stochastic logic, respectively.

In Table 2, we compare the area-delay product for the
deterministic implementation and the stochastic implemen-
tation for n = 3, 4, 5, 6 and M = 7, 8, 9, 10, 11. The last col-
umn of the table shows the ratio of the area-delay product
of the stochastic implementation to that of the deterministic
implementation. We can see that when M ≤ 8, the area-
delay product of the stochastic implementation is less than
that of the deterministic implementation and when M ≤ 10,
the area-delay product of the stochastic implementation is
less than twice that of the deterministic implementation.

Table 2: The area-delay product comparison of the de-

terministic implementation and the stochastic implemen-

tation of polynomials with different degree n and resolu-

tion 2−M .

area-delay product stoch. prod.
n M

deter. impl. stoch. impl. deter. prod.

7 99207 28160 0.284
8 152745 56320 0.369

3 9 222615 112640 0.506
10 310977 225280 0.724
11 419991 450560 1.073
7 132276 87040 0.658
8 203660 174080 0.855

4 9 296820 348160 1.173
10 414636 696320 1.679
11 559988 1392640 2.487
7 165345 125440 0.759
8 254575 250880 0.986

5 9 371025 501760 1.352
10 518295 1003520 1.936
11 699985 2007040 2.867
7 198414 148480 0.748
8 305490 296960 0.972

6 9 445230 593920 1.334
10 621954 1187840 1.910
11 839982 2375680 2.828

4.2 Comparison of Circuit Performance on Noisy
Input Data

We compare the performance of deterministic vs. stochas-
tic computation on polynomial evaluations when the input
data is corrupted with noise. Suppose that the input data of
a deterministic implementation is M = 10 bits. In order to
have the same resolution, the bit stream of a stochastic im-
plementation contains 2M = 1024 bits. We choose the error
ratio ε of the input data to be 0, 0.001, 0.002, 0.005, 0.01,
0.02, 0.05, and 0.1, as measured by the fraction of random
bit flips that occur.

To measure the impact of the noise, we performed two sets
of experiments. In the first, we chose the 6-th order Maclau-
rin polynomial approximation of 11 elementary functions as
our implementation target. We list these 11 functions in Ta-
ble 3, together with the degree of their 6-th order Maclaurin
polynomials. Such Maclaurin approximations are commonly
used in numerical evaluation of non-polynomial functions.

All of these Maclaurin polynomials evaluate to non-negative
values for 0 ≤ t ≤ 1. However, for some of these, the max-
imal evaluation on [0, 1] is greater than 1. Thus, we scale
these polynomials by the reciprocal of their maximal value;
this is a necessary condition for computation with stochastic
logic. The scaling factors that we used are listed in Table 3.

We evaluated each Maclaurin polynomial on 13 points:
0.2, 0.25, 0.3, . . . , 0.8. For each error ratio ε, each Maclaurin



Table 3: Sixth-order Maclaurin polynomial approxima-

tion of elementary functions.

function degree of Mac. poly. scaling factor
sin(x) 5 N/A
tan(x) 5 0.6818

arcsin(x) 5 0.8054
arctan(x) 5 N/A
sinh(x) 5 0.8511
tanh(x) 5 N/A

arcsinh(x) 5 N/A
cos(x) 6 N/A
cosh(x) 6 0.6481
exp(x) 6 0.3679

ln(x+ 1) 6 N/A

polynomial, and each evaluation point, we simulated both
the stochastic and the deterministic implementations 1000
times. We averaged the relative errors over all simulations.
Finally, for each error ratio ε, we averaged the relative errors
over all polynomials and all evaluation points.

In the second set of experiments, we randomly choose 100
Bernstein polynomials of degree 6 with coefficients in the
unit interval. With this specification, we are guaranteed that
the computation can be implemented using stochastic logic.
We evaluated each on 10 points: 0, 1/9, 2/9, . . . , 1. We com-
piled similar statistics to that in the first set of experiments.
Table 4 shows the average relative error of the stochastic
implementation and the deterministic implementation ver-
sus different error ratios ε for both sets of experiments. We
plot the data for the experiments on Maclaurin polynomials
in Figure 5 to give a clear comparison.

Table 4: Relative error for the stochastic implemen-

tation and deterministic implementation of polynomial

computation versus the error ratio ε in the input data.

Maclaurin poly. Randomly chosen poly.
error rel. error rel. error rel. error rel. error
ratio of stoch. of deter. of stoch. of deter.
ε impl.(%) impl.(%) impl.(%) impl.(%)

0.0 2.63 0.00 2.92 0.00
0.001 2.62 0.68 3.06 11.1
0.002 2.64 1.41 3.27 21.3
0.005 2.73 3.36 4.25 53.9
0.01 3.01 6.75 6.05 106
0.02 3.89 12.8 9.93 208
0.05 7.54 28.9 21.4 494
0.1 13.8 51.2 39.2 948

When ε = 0, meaning that no noise is injected into the in-
put data, the deterministic implementation computes with-
out any error. However, due to the inherent variance, the
stochastic implementation produces a small relative error.
However, with noise, the relative error of the determinis-
tic implementation blows up dramatically as ε increases.
Even for small values, the stochastic implementation per-
forms much better.
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Figure 5: A plot of the relative error for the stochas-

tic and the deterministic implementation of Maclaurin

polynomial computation versus the error ratio ε in the

input data.

In Table 4, note that the relative evaluation error of the
randomly chosen polynomials computed by the deterministic
implementation is much larger than that of the Maclaurin
polynomials. The explanation for this is that the randomly
chosen polynomials have much larger power-form coefficients
than the Maclaurin polynomials do. Thus, bit flips on the
coefficients dramatically change their evaluation.

It is not surprising that the deterministic implementation
is so sensitive to errors, given that the representation used
is binary radix. In a noisy environment, bit flips afflict
all the bits with equal probability. In the worst case, the
most significant bit gets flipped, resulting in relative error
of 2M−1/2M = 1/2 on the input value. In contrast, in a
stochastic implementation, the data is represented as the
fractional weight on a bit stream of length 2M . Thus, a sin-
gle bit flip only changes the input value by 1/2M , which is
minuscule in comparison.

5. CONCLUSION AND FUTURE WORK
The synthesis results for the stochastic implementation of

polynomial arithmetic are convincing. The area-delay prod-
uct is comparable to that of deterministic implementations
with adders and multipliers. However, the circuits are much
more error-tolerant. The precision of the results is depen-
dent only on the statistics of the streams that flow through
the datapaths, and so the computation can tolerate errors
gracefully.

In this paper, we focused on noisy input data, assuming
that the logic itself is fault free. For emerging technolo-
gies, such as self-assembled nanowire circuits, this assump-
tion must be challenged: the logic and the interconnects
may also be unreliable [4], In future work, we will extend
our methodology to stochastic computation of arithmetic
functions with probabilistic logic and interconnects as well
as signal values.
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