\oplus _____

Midterm# 1

Thur., Oct. 16, 2014, at 9:45AM 10:55am, in class.

Open books and notes – anything on paper. No electronic aids allowed except for laptops or tablets to display electronic copies of the text by Roth. You are not allowed to display anything else on a laptop or tablet. No phones.

1. Conversion Between Different Number Representations [12 pts.]

(a) Convert the following binary numbers to decimal [1 pts.]:

i. 101.101

(b) Convert the following decimal numbers to binary [1 pts.]. Truncate after 12 bits beyond the binary point.

i. 666.666

- (c) Perform the following number conversions [1 pts]:
 - i. Binary 1010001101110111101101001110 to hexadecimal
 - ii. Hexadecimal 67AC789AB6BF786 to binary.
- (d) Perform the following number conversions[3 pts]:

i. 665_7 (base 7) to base 5

- (e) Give the negative of the following numbers in two's complement notation (length is 8 bits) [3 pts].
 - i. 11101111
 - ii. 00010000
- (f) Suppose that the following bits represent positive and negative numbers in two's complement notation. Perform the operation indicated, keeping the length at 8 bits. Give the result in binary [3 pts].

i. $11111110_2 + 00111111_2$.

ii. $00111111_2 \times 11111110_2$.

2. Boolean Functions, Truth Tables, Logic Minimization, Two-Level Forms and Binary Decision Diagrams [40 pts.]

Consider a boolean function f(a, b, c, d). Suppose that the function is 1 if

- There is a single 1 among the inputs, or
- There is a single 0 among the inputs, or
- There are exactly two 1's among the inputs

and it is 0 otherwise.

- (a) Write down a truth table for the function [2 pts.]
- (b) Using a Karnaugh map, provide a minimal sum-of-products (AND-OR) expression. [3 pts.]
- (c) Using a Karnaugh map, provide a minimal product-of-sums (OR-AND) expression. [3 pts.]
- (d) Provide a minimal NAND-NAND expression [2 pts.].
- (e) Provide a minimal OR-NAND expression [2 pts.].
- (f) Provide a minimal NOR-OR expression [2 pts.].
- (g) Provide a minimal NOR-NOR expression [2 pts.].
- (h) Provide a minimal AND-NOR expression [2 pts.].
- (i) Provide a minimal NAND-AND expression [2 pts.].
- (j) Provide a AND-XOR expression (with no negations) [10 pts.].
- (k) Draw a reduced Binary Decision diagram for the function [10 pts.].

3. Expressions from Binary Decision Diagrams [24 pts.]

Provide an expression for the function of this BDD.

I	ΝI
0	1

4. Timing Analysis [24 pts.]

Compute the arrival times at f_1 , f_2 , and f_3 for each input combination for the following circuit. Assume a delay of 1 for each gate. Assume that the bubbles have *no* delay.

Figure 1: Circuit for Timing Analysis.