
1

An Architecture for Fault-Tolerant Computation
with Stochastic Logic

Weikang Qian, Xin Li, Marc D. Riedel, Kia Bazargan, and David J. Lilja

Abstract—Mounting concerns over variability, defects and noise motivate a new approach for digital circuitry: stochastic logic, that is
to say, logic that operates on probabilistic signals and so can cope with errors and uncertainty. Techniques for probabilistic analysis
of circuits and systems are well established. We advocate a strategy for synthesis. In prior work, we described a methodology for
synthesizing stochastic logic, that is to say logic that operates on probabilistic bit streams. In this paper, we apply the concept of
stochastic logic to a reconfigurable architecture that implements processing operations on a datapath. We analyze cost as well as the
sources of error: approximation, quantization, and random fluctuations. We study the effectiveness of the architecture on a collection
of benchmarks for image processing. The stochastic architecture requires less area than conventional hardware implementations.
Moreover, it is much more tolerant of soft errors (bit flips) than these deterministic implementations. This fault tolerance scales gracefully
to very large numbers of errors.

Index Terms—Stochastic Logic, Reconfigurable Hardware, Fault-Tolerant Computation

F

1 INTRODUCTION

The successful design paradigm for integrated circuits
has been rigidly hierarchical, with sharp boundaries
between different levels of abstraction. From the logic
level up, the precise Boolean functionality of the system
is fixed and deterministic. This abstraction is costly: vari-
ability and uncertainty at the circuit level must be com-
pensated for by better physical design. With increased
scaling of semiconductor devices, soft errors caused by
ionizing radiation are a major concern, particularly for
circuits operating in harsh environments such as space.
Existing methods mitigate against bit-flips with system-
level techniques like error-correcting codes and modular
redundancy.

Randomness, however, is a valuable resource in com-
putation. A broad class of algorithms in areas such as
cryptography and communication can be formulated
with lower complexity if physical sources of randomness
are available [1], [2]. Applications that entail the simu-
lation of random physical phenomena, such as compu-
tational biology and quantum physics, also hinge upon
randomness (or good pseudo-randomness) [3].

We advocate a novel view for computation, called
stochastic logic. Instead of designing circuits that trans-
form definite inputs into definite outputs – say Boolean,
integer, or floating-point values into the same – we syn-
thesize circuits that conceptually transform probability
values into probability values. The approach is appli-

• This work is supported by a grant from the Semiconductor Research
Corporation’s Focus Center Research Program on Functional Engineered
Nano-Architectonics, contract No. 2003-NT-1107, a CAREER Award,
#0845650, from the National Science Foundation, and a grant from Intel
Corporation.

• The authors are with the Department of Electrical and Computer Engi-
neering, University of Minnesota, Minneapolis, MN, 55455, USA.
E-mail: {qianx030,lixxx914,mriedel,kia,lilja}@umn.edu

cable for randomized algorithms. It is also applicable
for data intensive applications such as signal processing
where small fluctuations can be tolerated but large errors
are catastrophic. In such contexts, our approach offers
savings in computational resources and provides signif-
icantly better fault tolerance.

1.1 Stochastic Logic

In prior work, we described a methodology for synthe-
sizing stochastic logic [4]. Operations at the logic level
are performed on randomized values in serial streams or
on parallel “bundles” of wires. When serially streaming,
the signals are probabilistic in time, as illustrated in
Figure 1(a); in parallel, they are probabilistic in space,
as illustrated in Figure 1(b).

The bit streams or wire bundles are digital, carrying
zeros and ones; they are processed by ordinary logic
gates, such as AND and OR. However, the signal is con-
veyed through the statistical distribution of the logical
values. With physical uncertainty, the fractional numbers
correspond to the probability of occurrence of a logical
one versus a logical zero. In this way, computations in
the deterministic Boolean domain are transformed into
probabilistic computations in the real domain. In the
serial representation, a real number x in the unit interval
(i.e., 0 ≤ x ≤ 1) corresponds to a bit stream X(t) of
length N , t = 1, 2, . . . , N . In the parallel representation,
it corresponds to the bits on a bundle of N wires. The
probability that each bit in the stream or the bundle is
one is P (X = 1) = x.

Throughout this paper, we illustrate our method with
serial bit streams. However, our approach is equally
applicable to parallel wire bundles. Indeed, we have
advocated stochastic logic as a framework for synthesis
for technologies such as nanowire crossbar arrays [5].

2

��� ���

� ������	������	

�����
�����
��

�

�

�

Fig. 1: Stochastic encoding: (a) A stochastic bit stream; (b) A stochastic wire bundle. A real value x in [0, 1] is represented as
a bit stream or a bundle X . For each bit in the bit stream or bundle, the probability that it is 1 is P (X = 1) = x.

Our synthesis strategy is to cast logical computations
as arithmetic operations in the probabilistic domain and
implement these directly as stochastic operations on
data-paths. Two simple arithmetic operations – multipli-
cation and scaled addition – are illustrated in Figure 2.

• Multiplication. Consider a two-input AND gate,
shown in Figure 2(a). Suppose that its inputs are
two independent bit streams X1 and X2. Its output
is a bit stream Y , where

y = P (Y = 1) = P (X1 = 1 and X2 = 1)
= P (X1 = 1)P (X2 = 1) = x1x2.

Thus, the AND gate computes the product of the
two input probability values.

• Scaled Addition. Consider a two-input multiplexer,
shown in Figure 2(b). Suppose that its inputs are
two independent stochastic bit streams X1 and X2

and its selecting input is a stochastic bit stream S.
Its output is a bit stream Y , where

y = P (Y = 1)
= P (S = 1)P (X1 = 1) + P (S = 0)P (X2 = 1)
= sx1 + (1− s)x2.

(Note that throughout the paper, multiplication and
addition represent arithmetic operations, not Boolean
AND and OR.) Thus, the multiplexer computes the
scaled addition of the two input probability values.

More complex functions such as division, the Taylor
expansion of the exponential function, and the square
root function can also be implemented with only a
dozen or so gates each using the stochastic methodol-
ogy. Prior work established specific constructs for such
operations [6]–[8]. We tackle the problem more broadly:
we propose a synthesis methodology for stochastic com-
putation.

The stochastic approach offers the advantage that
complex operations can be performed with very simple
logic. Of course the method entails redundancy in the
encoding of signal values. Signal values are fractional
values corresponding to the probability of logical one. If
the resolution of a computation is required to be 2−M

then the length or width of the bit stream should be 2M

bits. This is a significant trade-off in time (for a serial
encoding) or in space (for a parallel encoding).

1.2 Fault Tolerance

The advantage of the stochastic architecture in terms of
resources is that it tolerates faults gracefully. Compare a
stochastic encoding to a standard binary radix encoding,
say with M bits representing fractional values between
0 and 1. Suppose that the environment is noisy; bit flips
occur and these afflict all the bits with equal probability.
With a binary radix encoding, suppose that the most
significant bit of the data gets flipped. This causes a
relative error of 2M−1/2M = 1/2. In contrast, with
a stochastic encoding, the data is represented as the
fractional weight on a bit stream of length 2M . Thus,
a single bit flip only changes the input value by 1/2M ,
which is small in comparison.

Figure 3 illustrates the fault tolerance that our ap-
proach provides. The circuit in Figure 3(a) is a stochastic
implementation while the circuit in Figure 3(b) is a
conventional implementation. Both circuits compute the
function:

y = x1x2s+ x3(1− s).

Consider the stochastic implementation. Suppose that
the inputs are x1 = 4/8, x2 = 6/8, x3 = 7/8, and
s = 2/8. The corresponding bit streams are shown
above the wires. Suppose that the environment is noisy
and bit flips occur at a rate of 10%; this will result
in approximately three bit flips for the stream lengths
shown. A random choice of three bit flips is shown in
the figure. The modified streams are shown below the
wires. With these bit flips, the output value changes but
by a relatively small amount: from 6/8 to 5/8.

In contrast, Figure 3(b) shows a conventional imple-
mentation of the function with multiplication and addi-
tion modules operating on a binary radix representation:
the real numbers x1 = 4/8, x2 = 6/8, x3 = 7/8, and
s = 2/8 are encoded as (0.100)2, (0.110)2, (0.111)2, and
(0.010)2, respectively. The correct result is y = (0.110)2,
which equals 6/8. In the same situation as above, with
a 10% rate of bit flips, approximately one bit will get
flipped. Suppose that, unfortunately, this is the most sig-
nificant bit of x3. As a result, x3 changes to (0.011)2 = 3/8
and the output y becomes (0.0112) = 3/8. This is a
much larger error than we expect with the stochastic
implementation.

3

���

��
��

�
�����������

�����������

�����������

�	

�	

�	

��

��

��

�

�

�

�

��� ���

�	

�����������

�����������

�	

�����������

�	

�����������

�	

Fig. 2: Stochastic implementation of arithmetic operations: (a) Multiplication; (b) Scaled addition.

AND

1,0,0,1,0,1,1,0 (4/8)

x
3

x
1

y

s

1,0,0,0,0,1,1,0

0,1,0,1,1,1,1,1 (6/8)

0,1,0,1,1,1,1,1 0,1,1,1,1,0,1,1 (6/8)

0,0,1,0,1,1,1,1 (5/8)
MUX

1

0

0,0,0,1,0,1,1,0 (3/8)

0,0,0,0,0,1,1,0

1,1,1,1,1,0,1,1 (7/8)

1,0,1,1,1,0,1,1

x
2

1,0,0,1,0,0,0,0 (2/8)

1,0,0,1,0,1,0,0

(a) Stochastic implementation of the function y = x1x2s + x3(1− s).

x
2

x

x

x

+

-

x
1

x
3

s

1.000

0.010 (2/8)

0.111 (7/8)

0.100 (4/8)

0.110 (6/8)

0.011

0.110

0.011 (3/8)

0.00011 (3/32)

0.10101 (21/32)

0.01001

y
0.110 (6/8)

0.011 (3/8)

(b) Conventional implementation of the function y = x1x2s + x3(1− s), using binary
radix multiplier, adder and subtractor units.

Fig. 3: A comparison of the fault tolerance of stochastic logic to conventional logic. The original bit sequence is
shown above each wire. A bit flip is indicated with a solid rectangle. The modified bit sequence resulting from the
bit flip is shown below each wire and indicated with a dotted rectangle.

1.3 Related Work and Context

The topic of computing reliably with unreliable compo-
nents dates back to von Neumann and Shannon [9], [10].
Techniques such as modular redundancy and majority
voting are widely used for fault tolerance. Error cor-
recting codes are applied for memory subsystems and
communication links, both on-chip and off-chip.

Probabilistic methods are ubiquitous in circuit and
system design. Generally, they are applied with the
aim of characterizing uncertainty. For instance, statistical
timing analysis is used to obtain tighter performance

bounds [11] and also applied in transistor sizing to
maximize yield [12]. . Many flavors of probabilistic
design have been proposed for integrated circuits. For
instance, [13] presents a design methodology based
on Markov random fields geared toward nanotechnol-
ogy; [14] presents a methodology based on probabilistic
CMOS, with a focus on energy efficiency.

There has a promising recent effort to design so-called
stochastic processors [15]. The strategy in that work is
to deliberately under-design the hardware, such that it
is allowed to produce errors, and to implement error

4

tolerance through software mechanisms. As much as
possible, the burden of error tolerance is pushed all
the way to the application layer. The approach permits
aggressive power reduction in the hardware design. It
is particularly suitable for high-performance computing
applications, such as Monte Carlo simulations, that nat-
urally tolerate errors.

On the one hand, our work is more narrowly circum-
scribed: we present a specific architectural design for
datapath computations. On the other hand, our contri-
bution is a significant departure from existing methods,
predicated on a new logic-level synthesis methodology.
We design processing modules that compute in terms
of statistical distributions. The modules processes serial
or parallel streams that are random at the bit level. In
the aggregate, the computation is robust and accurate
since the results depend only on the statistics not on
specific bit values. The computation is “analog” in char-
acter, cast in terms of real-valued probabilities, but it
is implemented with digital components. The strategy
is orthogonal to specific hardware-based methods for
error tolerance, such as error-coding of memory subsys-
tems [16]. It is also compatible with application layer and
other software-based methods for error tolerance.

In [4], we presented a methodology for synthesizing
arbitrary polynomial functions with stochastic logic. We
also extended the method to the computation of arbitrary
continuous functions through non-polynomial approxi-
mations [17]. In [18], we considered the complementary
problem of generating probabilistic signals for stochastic
computation. We described a method for transforming
arbitrary sources of randomness into the requisite prob-
ability values, entirely through combinational logic.

1.4 Overview

In this paper, we apply the concept of stochastic logic to
a reconfigurable architecture that implements processing
operations on a datapath. We analyze cost as well as
the sources of error: approximation, quantization, and
random fluctuations. We study the effectiveness of the
architecture on a collection of benchmarks for image
processing. The stochastic architecture requires less area
than conventional hardware implementations. Moreover,
it is much more tolerant of soft errors (bit flips) than
these deterministic implementations. This fault tolerance
scales gracefully to very large numbers of errors.

The rest of the paper is structured as follows. Section 2
discusses the synthesis of stochastic logic. Section 3
presents our reconfigurable architecture. Section 4 an-
alyzes the sources of error in stochastic computation.
Section 5 describes our implementation of the architec-
ture. Section 6 provides experimental results. Section 7
presents conclusions and future directions of research.

2 SYNTHESIZING STOCHASTIC LOGIC

2.1 Synthesizing Polynomials
By definition, the computation of polynomial functions
entails multiplications and additions. These can be im-
plemented with the stochastic constructs described in
Section 1.1. However, the method fails for polynomials
with coefficients less than zero or greater than one, e.g.,
1.2x− 1.2x2, since we cannot represent such coefficients
with stochastic bit streams.

In [4], we proposed a method for implementing arbi-
trary polynomials, including those with coefficients less
than zero or greater than one. As long as the polynomial
maps values from the unit interval to values in the unit
interval, then no matter how large the coefficients are,
we can synthesize stochastic logic that implements it.
The procedure begins by transforming a power-form
polynomial into a Bernstein polynomial [19]. A Bernstein
polynomial of degree n is of the form

B(x) =
n∑
i=0

biBi,n(x), (1)

where each real number bi is a coefficient, called a
Bernstein coefficient, and each Bi,n(x)(i = 0, 1, . . . , n) is
a Bernstein basis polynomial of the form

Bi,n(x) =
(
n

i

)
xi(1− x)n−i. (2)

A power-form polynomial of degree n can be trans-
formed into a Bernstein polynomial of degree no less
than n. Moreover, if a power-form polynomial maps
the unit interval onto itself, we can convert it into a
Bernstein polynomial with coefficients that are all in the
unit interval.

A Bernstein polynomial with all coefficients in the unit
interval can be implemented stochastically by a general-
ized multiplexing circuit, shown in Figure 4. The circuit
consists of an adder block and a multiplexer block. The
inputs to the adder are an input set {x1, . . . , xn}. The
data inputs to the multiplexer are z0, . . . , zn. The outputs
of the adder are the selecting inputs to the multiplexer
block. Thus, the output of the multiplexer y is set to be zi
(0 ≤ i ≤ n), where i equals the binary number computed
by the adder; this is the number of ones in the input set
{x1, . . . , xn}.
The stochastic input bit streams are set as follows:
• The inputs x1, . . . , xn are independent stochastic bit

streams X1, . . . , Xn representing the probabilities
P (Xi = 1) = x ∈ [0, 1], for 1 ≤ i ≤ n.

• The inputs z0, . . . , zn are independent stochastic bit
streams Z0, . . . , Zn representing the probabilities
P (Zi = 1) = bi ∈ [0, 1], for 0 ≤ i ≤ n, where the
bi’s are the Bernstein coefficients.

The output of the circuit is a stochastic bit stream Y
in which the probability of a bit being one equals the
Bernstein polynomial B(x) =

∑n
i=0 biBi,n(x). We discuss

generating and interpreting such input and output bit
streams in Sections 3.2 and 3.3.

5

+

x1
x2

xn

MUX

z0

z1

zn

y

Ʃi xi

...

Pr(xi = 1) = x

Pr(zi = 1) = bi

...

Fig. 4: A generalized multiplexing circuit implementing the
Bernstein polynomial y = B(x) =

∑n
i=0 biBi,n(x) with 0 ≤

bi ≤ 1, for i = 0, 1, . . . , n.

Example 1
The polynomial f1(x) = 1

4 + 9
8x−

15
8 x

2+ 5
4x

3 maps the unit
interval onto itself. It can be converted into a Bernstein
polynomial of degree 3:

f1(x) =
2
8
B0,3(x) +

5
8
B1,3(x) +

3
8
B2,3(x) +

6
8
B3,3(x).

Notice that all the coefficients are in the unit interval.
The stochastic logic that implements this Bernstein poly-
nomial is shown in Figure 5. Assume that the original
polynomial is evaluated at x = 0.5. The stochastic bit
streams of inputs x1, x2 and x3 are independent and each
represents the probability value x = 0.5. The stochastic bit
streams of inputs z0, . . . , z3 represent probabilities b0 = 2

8 ,
b1 = 5

8 , b2 = 3
8 , and b3 = 6

8 . As expected, the stochastic
logic computes the correct output value: f1(0.5) = 0.5. �

0,0,0,1,1,0,1,1 (4/8)

0,1,1,1,0,0,1,0 (4/8)

1,1,0,1,1,0,0,0 (4/8)

0,0,0,1,0,1,0,0 (2/8)

x1

x2

x3

1,2,1,3,2,0,2,1

0,1,0,1,0,1,1,1 (5/8)

0,1,1,0,1,0,0,0 (3/8)

1,1,1,0,1,1,0,1 (6/8)

MUX 0,1,0,0,1,1,0,1 (4/8)

z0

z1

z2

z3

y

0

1

2

3

Fig. 5: Stochastic logic implementing the Bernstein polynomial
f1(x) = 2

8
B0,3(x) + 5

8
B1,3(x) + 3

8
B2,3(x) + 6

8
B3,3(x) at x = 0.5.

Stochastic bit streams x1, x2 and x3 encode the value x = 0.5.
Stochastic bit streams z0, z1, z2 and z3 encode the correspond-
ing Bernstein coefficients.

2.2 Synthesizing Non-Polynomial Functions
It was proved in [4] that stochastic logic can only im-
plement polynomial functions. In real applications, of
course, we often encounter non-polynomial functions,
such as trigonometric functions. A method was proposed
in [17] to synthesize arbitrary functions by approxi-
mating them via Bernstein polynomial. Indeed, given a
continuous function f(x) of degree n as the target, a set
of real coefficients b0, b1, . . . , bn in the interval [0, 1] are
sought to minimize the objective function

∫ 1

0

(f(x)−
n∑
i=0

biBi,n(x))2 dx, (3)

By expanding Equation (3), an equivalent objective
function can be obtained:

f(b) =
1
2
bTHb + cT b, (4)

where

b = [b0, . . . , bn]T ,

c = [−
∫ 1

0

f(x)B0,n(x) dx, . . . ,−
∫ 1

0

f(x)Bn,n(x) dx]T ,

H =


∫ 1

0
B0,n(x)B0,n(x) dx . . .

∫ 1

0
B0,n(x)Bn,n(x) dx∫ 1

0
B1,n(x)B0,n(x) dx . . .

∫ 1

0
B1,n(x)Bn,n(x) dx

...
. . .

...∫ 1

0
Bn,n(x)B0,n(x) dx . . .

∫ 1

0
Bn,n(x)Bn,n(x) dx


This optimization problem is, in fact, a constrained

quadratic programming problem. Its solution can be
obtained using standard techniques. Once we obtain the
requisite Bernstein coefficients, we can implement the
polynomial approximation as a Bernstein computation
with the generalized multiplexing circuit described in
Section 2.1.

Example 2
Gamma Correction. The gamma correction function is a
nonlinear operation used to code and decode luminance
and tri-stimulus values in video and still-image systems.
It is defined by a power-law expression

Vout = V γin ,

where Vin is normalized between zero and one [20]. We
apply a value of γ = 0.45, which is the value used in most
TV cameras.

Consider the non-polynomial function

f2(x) = x0.45.

We approximate this function by a Bernstein polynomial
of degree 6. By solving the constrained quadratic opti-
mization problem, we obtain the Bernstein coefficients:

b0 = 0.0955, b1 = 0.7207, b2 = 0.3476, b3 = 0.9988,
b4 = 0.7017, b5 = 0.9695, b6 = 0.9939. �

In a strict mathematical sense, stochastic logic can only
implement functions that map the unit interval into the
unit interval. However, with scaling, stochastic logic can
implement functions that map any finite interval into
any finite interval. For example, the functions used in
grayscale image processing are defined on the interval
[0, 255] with the same output range. If we want to
implement such a function y = f(t), we can instead
implement the function y = g(t) = 1

256f(256t). Note that
the new function g(t) is defined on the unit interval and
its output is also on the unit interval.

6

ReSC UnitRandomizer

const
reg

LFSR

>

 Cx

Cz0 ,Cz1

Cz2 ,Cz3

M
U
X

y

z1 0,1,0,1,0,1,1,1 (5/8)

x1 1,1,0,1,1,0,0,0 (4/8)

1,2,1,3,2,0,2,1

0,1,0,0,1,1,0,1 (4/8)
z3 1,1,1,0,1,1,0,1 (6/8)
z2 0,1,1,0,1,0,0,0 (3/8)

z0 0,0,0,1,0,1,0,0 (2/8)

x2 0,1,1,1,0,0,1,0 (4/8)

x3 0,0,0,1,1,0,1,1 (4/8)

De-Randomizer

const
reg

> +

Fig. 6: A reconfigurable stochastic computing architecture. Here the ReSC Unit implements the target function y = 1
4

+ 9
8
x −

15
8
x2 + 5

4
x3 at x = 0.5.

3 THE STOCHASTIC ARCHITECTURE
We present a novel Reconfigurable architecture based on
Stochastic logiC: the ReSC architecture. As illustrated in
Figure 6, it composed of three parts: the Randomizer Unit
generates stochastic bit streams; the ReSC Unit processes
these bit streams; and the De-Randomizer Unit converts
the resulting bit streams to output values. The architec-
ture is reconfigurable in the sense that it can be used
to compute different functions by setting appropriate
values of constant registers.

3.1 The ReSC Unit
The ReSC Unit is the kernel of the architecture. It is the
generalized multiplexing circuit described in Section 2.1,
which implements Bernstein polynomials with coeffi-
cients in the unit interval. As described in Section 2.2, we
can use it to approximate arbitrary continuous functions.

The probability x of the independent stochastic bit
streams xi is controlled by the binary number Cx in a
constant register, as illustrated in Figure 6. The constant
register is a part of the Randomizer Unit, discussed
below. Similarly, stochastic bit streams z0, . . . , zn repre-
senting a specified set of coefficients can be produced
by configuring the binary numbers Czi

’s in constant
registers.

3.2 The Randomizer Unit
The Randomizer Unit is shown in Figure 7. To generate
a stochastic bit stream, a random number generator
produces a number R in each clock cycle. If R is strictly
less than the number C stored in the corresponding
constant number register, then the comparator generates
a one; otherwise, it generates a zero.

In our implementation, we use linear feedback shift
registers (LFSRs). Assume that an LFSR has L bits.

Random Number

Generator

Constant Number

Register

Comparator

Stochastic Bit Stream

0,1,0,1,1,0,1,...

Fig. 7: The Randomizer Unit.

Accordingly, it generates repeating pseudorandom num-
bers with a period of 2L − 1. We choose L so that
2L − 1 ≥ N , where N is the length of the input random
bit streams. This guarantees good randomness of the
input bit streams. The set of random numbers that can
be generated by such an LFSR is {1, 2, . . . , 2L − 1} and
the probability that R equals a specific k in the set is

P (R = k) =
1

2L − 1
. (5)

Given a constant integer 1 ≤ C ≤ 2L, the comparator
generates a one with probability

P (R < C) =
C−1∑
k=1

P (R = k) =
C − 1
2L − 1

. (6)

Thus, the set of probability values that can be generated
by the Randomizer Unit is

S = {0, 1
2L − 1

, . . . , 1}. (7)

Given an arbitrary value 0 ≤ p ≤ 1, we round it to the
closest number p′ in S. Hence, C is determined by p as

C = round(p(2L − 1)) + 1, (8)

7

where the function round(x) equals the integer nearest
to x. The value p is quantized to

p′ =
round(p(2L − 1))

2L − 1
(9)

In our stochastic implementation, we require different
input random bit streams to be independent. Therefore,
LFSRs for generating different input random bit streams
are configured to have different feedback functions.

3.3 The De-Randomizer Unit
The De-Randomizer Unit translates the result of the
stochastic computation, expressed as a randomized bit
stream, back to a deterministic value using a counter. We
set the length of the stochastic bit stream to be a power
of 2, i.e., N = 2M , where M is an integer. We choose
the number of bits of the counter to be M + 1, so that
we can count all possible numbers of ones in the stream:
from 0 to 2M ones. We treat the output of the counter as
a binary decimal number d = (cM .cM−1 . . . c0)2, where
c0, c1, . . . , cM are the M + 1 output bits of the counter.

Since each bit of the stream X has probability x of
being one, the mean value of the counter result d is

E[d] = E

[
(cM . . . c0)2

2M

]
= E

[
1
N

N∑
τ=1

X(τ)

]

=
1
N

N∑
τ=1

E[X(τ)] = x,

(10)

which is the value represented by the bit stream X .
Compared to the kernel, the Randomizer and De-

Randomizer units are expensive in terms of the hardware
resources required. Indeed, they dominate the area cost
of the architecture. We note that in some applications,
both the Randomizer and De-Randomizer units could
be implemented directly through physical interfaces. For
instance, in sensor applications, analog voltage discrim-
inating circuits might be used to transform real-valued
input and output values into and out of probabilistic
bit streams [21]. Also, random bit streams with specific
probabilities can be generated from fixed sources of
randomness through combinational logic. In [18], we
presented a method for synthesizing logic that generates
arbitrary sets of output probabilities from a small given
set of input probabilities.

4 THE ERROR ANALYSIS

By its very nature, stochastic logic introduces uncertainty
into the computation. There are three sources of errors.

1) The error due to the Bernstein approximation:
Since we use a Bernstein polynomial with coeffi-
cients in the unit interval to approximate a function
g(t), there is some approximation error

e1 =

∣∣∣∣∣g(t)−
n∑
i=0

bi,nBi,n(t)

∣∣∣∣∣ . (11)

We could use the L2-norm to measure the average
error as

e1avg =

(
1

1− 0

∫ 1

0

(g(t)−
n∑
i=0

bi,nBi,n(t))2 dt

)0.5

=

(∫ 1

0

(g(t)−
n∑
i=0

bi,nBi,n(t))2 dt

)0.5

(12)

The average approximation error e1avg only de-
pends on the original function g(t) and the degree
of the Bernstein polynomial; e1avg decreases as n
increases. For all of the functions that we tested, a
Bernstein approximation of degree of 6 was suffi-
cient to reduce e1avg to below 10−3.†

2) The quantization error:
As shown in Section 3.2, given an arbitrary value
0 ≤ p ≤ 1, we round it to the closest number p′ in
S = {0, 1

2L−1
, . . . , 1} and generate the correspond-

ing bit stream. Thus, the quantization error for p
is

|p− p′| ≤ 1
2(2L − 1)

, (13)

where L is the number of bits of the LFSR.
Due to the effect of quantization, we will com-

pute
∑n
i=0 b

′
i,nBi,n(t′) instead of the Bernstein ap-

proximation
∑n
i=0 bi,nBi,n(t), where b′i,n and t′ are

the closest numbers to bi,n and t, respectively, in
set S. Thus, the quantization error is

e2 =

∣∣∣∣∣
n∑
i=0

b′i,nBi,n(t′)−
n∑
i=0

bi,nBi,n(t)

∣∣∣∣∣ (14)

Define ∆bi,n = b′i,n − bi,n and ∆t = t′ − t. Then,
using a first order approximation, the error due to
quantization is

e2 ≈

∣∣∣∣∣
n∑
i=0

Bi,n(t)∆bi,n +
n∑
i=0

bi,n
dBi,n(t)

dt
∆t

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=0

Bi,n(t)∆bi,n + n

n−1∑
i=0

(bi+1,n − bi,n)Bi,n−1(t)∆t

∣∣∣∣∣
Notice that since 0 ≤ bi,n ≤ 1, we have

|bi+1,n − bi,n| ≤ 1. Combining this with the fact
that

∑n
i=0Bi,n(t) = 1 and |∆bi,n|, |∆t| ≤ 1

2(2L−1)
,

†. For many applications, 10−3 would be considered a low error
rate. As discussed in Section 6, due to inherent stochastic variation, our
stochastic implementation has larger output errors than conventional
implementations when the input error rate is low. Thus, our system
targets noisy environments with relatively high input error rates –
generally, larger than 0.01.

8

we have

e2 ≤
1

2(2L − 1)

∣∣∣∣∣
n∑
i=0

Bi,n(t)

∣∣∣∣∣
+

n

2(2L − 1)

∣∣∣∣∣
n−1∑
i=0

Bi,n−1(t)

∣∣∣∣∣
=

n+ 1
2(2L − 1)

.

(15)

Thus, the quantization error is inversely propor-
tional to 2L. We can mitigate this error by increas-
ing the number of bits L of the LFSR.

3) The error due to random fluctuations: Due to
the Bernstein approximation and the quantization
effect, the output bit stream Y (τ) (τ = 1, 2, . . . , N)
has probability p′ =

∑n
i=0 b

′
i,nBi,n(t′) that each bit

is one. The De-Randomizer Unit returns the result

y =
1
N

N∑
τ=1

Y (τ). (16)

It is easily seen that E[y] = p′. However, the
realization of y is not, in general, exactly equal to
p′. The error can be measured by the variation as

V ar[y] = V ar[
1
N

N∑
τ=1

Y (τ)] =
1
N2

N∑
τ=1

V ar[Y (τ)]

=
p′(1− p′)

N
.

(17)

Since V ar[y] = E[(y − E[y])2] = E[(y − p′)2], the
error due to random fluctuations is

e3 = |y − p′| ≈
√
p′(1− p′)

N
. (18)

Thus, the error due to random fluctuations is in-
versely proportional to

√
N . Increasing the length

of the bit stream will decrease the error.
The overall error is bounded by the sum of the above

three error components:

e = |g(t)− y| ≤

∣∣∣∣∣g(t)−
n∑
i=0

bi,nBi,n(t)

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=0

bi,nBi,n(t)−
n∑
i=0

b′i,nBi,n(t′)

∣∣∣∣∣
+

∣∣∣∣∣
n∑
i=0

b′i,nBi,n(t′)− y

∣∣∣∣∣
= e1 + e2 + e3.

(19)

Note that we choose the number of bits L of the LFSRs
to satisfy 2L − 1 ≥ N in order to get non-repeating
random bit streams. Therefore, we have

1
2L

<
1
N
� 1√

N

Combining the above equation with Equations (15) and
(18), we can see that in our implementation, the error due

to random fluctuations will dominate the quantization
error. Therefore, the overall error e is approximately
bounded by the sum of error e1 and e3, i.e.,

e ≤ e1 + e3.

5 IMPLEMENTATION

The top-level block diagram of the system is illustrated
in Figure 8. A MicroBlaze 32-bit soft RISC processor core
is used as the main processor. Our ReSC is configured
as a coprocessor, handled by the Microblaze. The Mi-
croBlaze talks to the ReSC unit through a Fast Simplex
Link (FSL), a FIFO-style connection bus system [22]. (The
MicroBlaze is the master; the ReSC unit is the slave.)

MicroBlaze
(Host)

FS
L-
In
te
rf
ac
e

ReSC
(Co-processor)

FSL0FSL0

FSL1

Fig. 8: Overview of the architecture of the ReSC system.

Consider the example of the gamma function, dis-
cussed in Example 2. We approximate this function by a
Bernstein polynomial of degree 6 with coefficients:

b0 = 0.0955, b1 = 0.7207, b2 = 0.3476, b3 = 0.9988,
b4 = 0.7017, b5 = 0.9695, b6 = 0.9939

In our implementation, the LFSR has 10 bits. Thus, by (8),
the numbers that we load into in the constant coefficient
registers are:

C0 = 99, C1 = 738, C2 = 357, C3 = 1023,
C4 = 719, C5 = 993, C6 = 1018.

Figure 9 illustrates how we specify C code to im-
plements the gamma correction function on the ReSC
architecture. Such code is compiled by the MicroBlaze C
compiler. The coefficients for the Bernstein computation
are specified in lines 4 to 7. These are loaded into
registers in lines 9 to 12. A stochastic bit stream is defined
in lines 14 to 19. The computation is executed on the
ReSC coprocessor in line 22. The results are read in line
25.

6 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our method on
a collection of benchmarks for image processing. We
discuss one of these, the gamma correction function, in
detail. Then we study the hardware cost and robustness
of our architecture on all the test cases.

9

// Original C code for the gamma
// correction function.
...

x = (uchar)(256*(pow(((float)x)/256,.45)));
...

⇓
1 // C code for gamma correction function
2 // on the the ReSC architecture.
3

4 // Define the Bernstein coefficients:
5 int ReSC_para[] = {
6 1, 99, 738, 357, 1023, 719, 993, 1018
7 };
8 ...
9 // Load the coefficients into registers.

10 for (int i = 0; i < 8; i++) {
11 mb_write_datafsl(ReSC_para[i],i);
12 }
13 ...
14 // Create a random bitstream.
15 int rand_data[] = {8, 0};
16 rand_data[1]=((uint)x)<<2;
17 for(int i=0; i < 2; i++) {
18 mb_write_datafsl(rand_data[i],i);
19 }
20 ...
21 // Execute the computation.
22 while(mb_read_datafsl(0)==0){}
23 ...
24 // Read the results.
25 x=(uchar)(mb_read_datafsl(1)>>2);
26 ...

Fig. 9: C code fragments for the gamma correction
function, f(x) = x0.45, on the ReSC architecture.

6.1 A Case Study: Gamma Correction

We continue with our running example, the gamma
correction function of Example 2. We present an error
analysis and a hardware cost comparison for this func-
tion.

6.1.1 Error Analysis

Consider the three error components described in Sec-
tion 4.

1) Error due to the Bernstein approximation. Fig-
ure 10 plots the error due to the Bernstein approxi-
mation versus the degree of the approximation. The
error is measured by (12). It obviously shows that
the error decreases as the degree of the Bernstein
approximation increases. For a choice of degree
n = 6, the error is approximately 4 · 10−3.

To get more insight into how the error due to the
Bernstein approximation changes with increasing
degrees, we apply the degree 3, 4, 5 and 6 Bernstein
approximations of the gamma correction function
to an image. The resulting images for different
degrees of Bernstein approximation are shown in
Figure 13.

2) Quantization error. Figure 11 plots the quanti-
zation error versus the number of bits L of the
LFSR. In the figure, the x-axis is 1/2L, where the

range of L is from 5 to 11. For different val-
ues of L, b′i and x′ in (14) change according to
Equation (9). The quantization error is measured
by (14) with the Bernstein polynomial chosen as
the degree 6 Bernstein polynomial approximation
of the gamma correction function. For each value of
L, we evaluate the quantization error on 11 sample
points x = 0, 0.1, . . . , 0.9, 1. The mean, the mean
plus the standard deviation, and the mean minus
the standard deviation of the errors are plotted
by a circle, a downward-pointing triangle, and a
upward-pointing triangle, respectively.

Clearly, the means of the quantization error are
located near a line, which means that the quantiza-
tion error is inversely proportional to 2L. Increasing
L will decrease the quantization error.

To get a better intuitive understanding of how
the quantization error changes with increasing
number of bits of the LFSR, we apply four different
quantizations of the degree-6 Bernstein approxi-
mations of the gamma correction function to an
image. These four different quantizations are based
on LFSRs with 3, 4, 5 and 6 bits, respectively. The
resulting images for different degrees of Bernstein
approximation are shown in Figure 14.

3) Error due to stochastic variation. Figure 12 plots
the error due to stochastic variation versus the
length N of the stochastic bit stream. In the figure,
the x-axis is 1/

√
N , where N is chosen to be 2m,

with m = 7, 8, . . . , 13. The error is measured as the
average of 50 Monte Carlo simulations of the differ-
ence between the stochastic computation result and
the quantized implementation of the degree 6 Bern-
stein polynomial approximation of the gamma cor-
rection function. To add the quantization effect, we
choose an LFSR of 10 bits. For each N , we evaluate
the error on 11 sample points x = 0, 0.1, . . . , 0.9, 1.
The mean, the mean plus the standard deviation,
and the mean minus the standard deviation of
the errors are plotted by a circle, a downward-
pointing triangle, and a upward-pointing triangle,
respectively.

The figure clearly shows that the means of the
error due to stochastic variation are located near a
straight line. Thus, it confirms the fact that the error
due to stochastic variation is inversely proportional
to
√
N . The error component could be decreased by

increasing the length of the stochastic bit stream.
To have a further impression on how the error

due to stochastic variation changes with increasing
length of the stochastic bit stream, we apply four
stochastic implementations of the gamma correc-
tion with varying bit stream lengths to an image.
The lengths of the stochastic bit streams in these
four implementations are 128, 256, 512 and 1024,
respectively. The four stochastic implementations
are based on Bernstein approximation of degree 6

10

2 4 6 8 10

5

10

15
x 10

−3

degree

B
er

st
ei

n
ap

pr
ox

. e
rr

or

Fig. 10: The Bernstein approxima-
tion error versus the degree of the
Bernstein approximation.

0 0.01 0.02 0.03 0.04
0

0.005

0.01

0.015

1 / 2L

ab
so

lu
te

 e
rr

or

Fig. 11: The quantization error ver-
sus 1/2L, where L is the num-
ber of bits of the pseudo-random
number generator. The circles, the
downward-pointing triangles, and
the upward-pointing triangles rep-
resent the means, the means plus
the standard deviations, and the
means minus the standard devia-
tions of the errors on the sample
points x = 0, 0.1, . . . , 0.9, 1, respec-
tively.

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

1 / sqrt(N)

ab
so

lu
te

 e
rr

or

Fig. 12: The error due to random
fluctuations versus 1/

√
N , where

N is the length of the stochas-
tic bit stream. The circles, the
downward-pointing triangles, and
the upward-pointing triangles rep-
resent the means, the means plus
the standard deviations, and the
means minus the standard devi-
ations of the errors on sample
points x = 0, 0.1, . . . , 0.9, 1, respec-
tively.

(a) (b)

(c) (d)

Fig. 13: The effect of different Bern-
stein approximation degrees on
the gamma correction application.
The degrees are (a) 3; (b) 4; (c) 5;
(d) 6.

(a) (b)

(c) (d)

Fig. 14: The effect of different num-
bers of bits of the LFSR on the
gamma correction application. The
numbers of bits of the LFSR are (a)
3; (b) 4; (c) 5; (d) 6.

(a) (b)

(c) (d)

Fig. 15: The effect of differ-
ent lengths of the stochastic bit
streams on the gamma correction
application. The lengths of the
stochastic bit streams are (a) 128;
(b) 256; (c) 512; (d) 1024.

and an LFSR with 10 bits. The resulting images for
different lengths of the stochastic bit streams are
shown in Figure 15.

6.1.2 Hardware Cost Comparison
The most popular and straight-forward implementation
of the gamma correction function is based on direct table
lookup. For example, for a display system that supports
8 bits of color depth per pixel, an 8-bit input / 8-bit
output table is placed before or after the frame buffer.
However, this method is inefficient when more bits per

pixel are required. Indeed, for target devices such as
medical imaging displays and modern high-end LCDs,
10 to 12 bits per pixel are common. Various methods are
used to reduce hardware costs. For example, Lee et al.
presented a piece-wise linear polynomial (PLP) approx-
imation [20]. They implemented their design on a Xilinx
Virtex-4 XC4VLX100-12 FPGA. In order to make a fair
comparison, we present implementation results for the
same platform.

Table 1 illustrates the hardware cost of the three
approaches. The area of the ReSC implementation in-

11

TABLE 1: Hardware comparisons for three implemen-
tations of gamma correction: the direct lookup table
method, the piecewise linear polynomial (PLP) approx-
imation method, and our ReSC method.

Input Output Area [slices]
bits bits Conventional PLP∗ ReSC

8 8 69 − 164
10 10 295 − 177
12 10 486 233 180
13 10 606 242 203
14 10 717 249 236

∗ Cited from [20]. Extra memory bits are required.

Fig. 16: The result of average output error of conven-
tional and ReSC implementations.

cludes the Randomizer and De-Randomizer units. For
the basic 8-bit gamma correction function, our ReSC
approach requires 2.4 times the hardware usage of the
conventional implementation. For larger number of bits,
the hardware usage of our approach increases by only
small increments; in contrast, the hardware usage of
the conventional implementation increases by a linear
amount in the number of bits. In all cases, our approach
has better hardware usage than the PLP approxima-
tion. Furthermore, our approach provides fault tolerance
while the other approaches do not.

6.1.3 Fault Tolerance
To evaluate the robustness of our method, we analyze
the effect of soft errors. These are simulated by indepen-
dently flipping the input bits for a given percentage of
the computing elements. For example, if 5% noise was
added to the circuit, this implies that 5% of the total
number of input bits are randomly chosen and flipped.
We compare the effect of soft errors on our implementa-
tion to that on conventional implementations.

Figure 16 shows the average percentage error in the
output image for five different ratios of added noise.
The length of the stochastic stream is fixed at 1024 bits.
The stochastic implementation beats the conventional
method by less than 2 percent, on average. However, in
the conventional implementation, bit flips afflict each bit
of the binary radix representation with equal probability.
If the most significant bit gets flipped, the error that

occurs can be quite large. The analysis of the error
distribution is presented in Table 2.

TABLE 2: Analysis of error distribution of the gamma
correction function.

Added Produced Error (%)
Error >5 >10 >15 >20 >25
(%) Conv. Stoc. Conv. Stoc. Conv. Stoc. Conv. Stoc. Conv. Stoc.

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 4.0 0.0 3.0 0.0 2.4 0.0 2.0 0.0 1.6 0.0
2 8.2 0.5 6.1 0.0 5.0 0.0 4.2 0.0 3.2 0.0
5 19.5 27.8 14.7 1.6 12.1 0.0 10.3 0.0 7.9 0.0
10 35.2 48.4 27.4 24.3 22.7 7.9 19.3 0.0 15.1 0.0
15 48.4 60.1 38.5 36.6 32.1 21.4 27.3 9.1 21.8 0.2

The images in Figure 17 illustrate the fault tolerance
of stochastic computation. When soft errors are injected
at rate of 15%, the image generated by the conventional
method is full of noisy pixels, while the image generated
by the stochastic method is still recognizable.

We note that the images become more grey as more
error is injected. The reason for this is that, with a
stochastic encoding, all errors bring the values closer
to center of the unit interval, i. e., a value of 1/2. For
example, consider the situation that the grey level is from
0 to 255 and the length of the stochastic bit stream is 255.
Without noise, a purely black pixel, i. e., one with a grey
level 0, is ideally represented as a bit stream of all zeroes.
If errors are injected, then some of the zeroes in the bit
stream become ones; the pixel lightens as its grey level
increases. Similarly, without noise, a purely white pixel,
i. e., one with a grey level of 255, is ideally represented as
a bit stream of all ones. If errors are injected, then some
of the ones in the bit stream become zeroes; the pixel
darkens as its grey level decreases. For pixels with other
grey levels, the trend is similar: injecting errors brings
the grey level of pixels toward the mid-brightness value
of 128.

6.2 Test Cases

We evaluated our ReSC architecture on ten test
cases [23]–[25]. These can be classified into three cate-
gories: Gamma, RGB→XYZ, XYZ→RGB, XYZ→CIE-L*ab,
and CIE-L*ab→XYZ are popular color-space con-
verter functions in image processing; Geometric and
Rotation are geometric models for processing two-
dimensional figures; and Example01 to Example03 are
operations used to generate 3D image data sets.

We first compare the hardware cost of conventional
deterministic digital implementations to that of stochas-
tic implementations. Next we compare the performance
of conventional and stochastic implementations on noisy
input data.

6.2.1 Hardware Cost Comparison
To synthesize the ReSC implementation of each function,
we first obtained the requisite Bernstein coefficients for
it from code written in Matlab. Next, we coded our

12

Original
Image

Conventional Implementation

Stochastic Implementation

(a) (b) (c) (d) (e) (f)

Fig. 17: Fault tolerance for the gamma correction function. The images in the top row are generated by a conventional
implementation. The images in the bottom row are generated by our stochastic ReSC implementation. Soft errors
are injected at a rate of (a) 0%; (b) 1%; (c) 2%; (d) 5%; (e) 10%; (f) 15%.

TABLE 3: Comparison of the hardware usage (in LUTs)
of conventional implementations to our ReSC implemen-
tations.

ReSC
Conventional System∗ Core∗∗

Module cost cost save (%) cost save (%)
α β (α-β)/α γ (α-γ)/α

Gamma 96 124 -29.2 16 83.3
RGB→XYZ 524 301 42.6 64 87.8
XYZ→RGB 627 301 52.0 66 89.5

XYZ→CIE-L*ab 295 250 15.3 58 80.3
CIE-L*ab→XYZ 554 258 53.4 54 90.3
Geometric 831 299 64.0 32 96.1
Rotation 737 257 65.1 30 95.9
Example01 474 378 20.3 46 90.3
Example02 1065 378 64.5 109 89.8
Example03 702 318 54.7 89 87.3

Average 590 286 40.3 56 89.1

∗ The entire ReSC architecture, including Randomizers
and De-Randomizers.
∗∗ The ReSC Unit by itself.

reconfigurable ReSC architecture in Verilog, and then
synthesized, placed and routed it with Xilinx ISE 9.1.03i
on a Virtex-II Pro XC2VP30-7-FF896 FPGA. Table 3 com-
pares the hardware usage of our ReSC implementations
to conventional hardware implementations. For the con-
ventional hardware implementations, the complicated
functions, e.g., trigonometric functions, are based on the
lookup table method. On average, our ReSC implemen-
tation achieves a 40% reduction of look-up table (LUT)
usage. If the peripheral Randomizer and De-Randomizer
circuitry is excluded, then our implementation achieves
an 89% reduction of hardware usage.

6.2.2 Fault Tolerance
To study the fault tolerance of our ReSC architecture,
we performed experiments injecting soft errors. This
consisted of flipping the input bits of a given percentage

TABLE 4: The average output error of our ReSC imple-
mentation compared to conventional implementations
for the color-space converter functions.

Injected Error
Module 1% 2% 10%

ReSC Conv. ReSC Conv. ReSC Conv.
Gamma 0.9 0.7 1.6 1.5 7.5 6.8

RGB→XYZ 0.8 2.7 1.4 5.3 6.2 22.4
XYZ→RGB 1.2 3.2 2.3 5.9 8.2 21.6

XYZ→CIE-L*ab 0.8 2.1 1.4 3.4 7.3 11.7
CIE-L*ab→XYZ 0.8 0.6 1.5 1.2 7.3 7.4

Average 0.9 2.2 1.7 4.0 7.3 15.8

TABLE 5: The percentage of pixels with errors greater
than 20% for conventional implementations and our
ReSC implementations of the color-space converter func-
tions.

Conventional ReSC
Module Injected Error Injected Error

1% 2% 10% 1% - 10%
Gamma 1.4 3.8 13.4 0.0

RGB→XYZ 2.2 4.4 20.7 0.0
XYZ→RGB 11.7 20.0 63.8 0.0

XYZ→CIE-L*ab 6.1 11.6 43.7 0.0
CIE-L*ab→XYZ 2.0 4.0 20.7 0.0

Average 5.0 10.0 37.2 0.0

of the computing elements in the circuit and evaluating
the output. We evaluated the output in terms of the
average error in pixel values. Table 4 shows the results
for three different injected noise ratios for conventional
implementations compared to our ReSC implementation
of the test cases. The average output error of the con-
ventional implementation is about two times that of the
ReSC implementation.

The ReSC approach produces dramatic results when
the magnitude of the error is analyzed. In Table 5, we

13

consider output errors that are larger than 20%. With a
10% soft error injection rate, the conventional approach
produces outputs that are more than 20% off over 37%
of the time, which is very high. In contrast, our ReSC
implementation never produces pixel values with errors
larger than 20%.

7 CONCLUSION

In a sense, the approach that we are advocating here
is simply a highly redundant, probabilistic encoding of
data. And yet, our synthesis methodology is a radical
departure from conventional approaches. By transform-
ing computations from the deterministic Boolean domain
into arithmetic computations in the probabilistic domain,
circuits can be designed with very simple logic. Such
stochastic circuits are much more tolerant of errors. Since
the accuracy depends only on the statistical distributions
of the random bit streams, this fault tolerances scales
gracefully to very large numbers of errors.

Indeed, for data intensive applications where small
fluctuations can be tolerated, but large errors are catas-
trophic, the advantage of our approach is dramatic.
In our experiments, we never observed errors above
20% with noise injection levels less than 10%, whereas
in conventional implementations such errors happened
nearly 40% of the time. This fault tolerance is achieved
with little or no penalty in cost: synthesis trials show
that our stochastic architecture requires less area than
conventional hardware implementations.

Because of inherent errors due to random fluctuations,
the stochastic approach is best suited for applications
that do not require high precision. A serial implemen-
tation of stochastic logic, it should be noted, requires
relatively many clock cycles to achieve a given precision
compared to a conventional implementation: if the res-
olution of the computation is required to be 2−M , then
2M clock cycles are needed to obtain the results. How-
ever, our stochastic architecture can compute complex
functions such as polynomials directly. A conventional
hardware implementation typically would implement
the computation of such functions over many clock
cycles. Accordingly, in an area-delay comparison, the
stochastic approach often comes out favorably. Also, a
significant advantage of the stochastic architecture is that
it can be reconfigured to compute different functions: the
function that is computed is determined by the values
loaded into the coefficient registers.

In future work, we will develop stochastic implemen-
tations for more general classes of functions, such as the
multivariate functions needed for complex signal pro-
cessing operations. Also, we will explore architectures
that are tailored to specific domains, such as applications
that are data-intensive yet probabilistic in nature and
applications that are not probabilistic in nature but can
tolerate fluctuations and errors.

REFERENCES
[1] M. Mitzenmacher and E. Upfal, Probability and Computing : Ran-

domized Algorithms and Probabilistic Analysis. Cambridge Univer-
sity Press, 2005.

[2] C. H. Papadimitriou, Computational Complexity. Addison-Wesley,
1995.

[3] D. T. Gillespie, “A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions,” Journal
of Computational Physics, vol. 22, no. 4, pp. 403–434, 1976.

[4] W. Qian and M. D. Riedel, “The synthesis of robust polynomial
arithmetic with stochastic logic,” in Design Automation Conference,
2008, pp. 648–653.

[5] W. Qian, J. Backes, and M. D. Riedel, “The synthesis of stochastic
circuits for nanoscale computation,” International Journal of Nan-
otechnology and Molecular Computation, vol. 1, no. 4, pp. 39–57,
2010.

[6] B. Gaines, “Stochastic computing systems,” in Advances in Infor-
mation Systems Science. Plenum, 1969, vol. 2, ch. 2, pp. 37–172.

[7] S. Toral, J. Quero, and L. Franquelo, “Stochastic pulse coded
arithmetic,” in International Symposium on Circuits and Systems,
vol. 1, 2000, pp. 599–602.

[8] B. Brown and H. Card, “Stochastic neural computation I: Compu-
tational elements,” IEEE Transactions on Computers, vol. 50, no. 9,
pp. 891–905, 2001.

[9] J. von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” in Automata Studies.
Princeton University Press, 1956, pp. 43–98.

[10] E. F. Moore and C. E. Shannon, “Reliable circuits using less
reliable relays,” Journal of the Franklin Institute, vol. 262, pp. 191–
208, 281–297, 1956.

[11] H. Chang and S. Sapatnekar, “Statistical timing analysis under
spatial correlations,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1467–1482,
2005.

[12] D. Beece, J. Xiong, C. Visweswariah, V. Zolotov, and Y. Liu, “Tran-
sistor sizing of custom high-performance digital circuits with
parametric yield considerations,” in Design Automation Conference,
2010, pp. 781–786.

[13] K. Nepal, R. Bahar, J. Mundy, W. Patterson, and A. Zaslavsky,
“Designing logic circuits for probabilistic computation in the
presence of noise,” in Design Automation Conference, 2005, pp. 485–
490.

[14] K. Palem, “Energy aware computing through probabilistic switch-
ing: A study of limits,” IEEE Transactions on Computers, vol. 54,
no. 9, pp. 1123–1137, 2005.

[15] S. Narayanan, J. Sartori, R. Kumar, and D. Jones, “Scalable
stochastic processors,” in Design, Automation and Test in Europe,
2010, pp. 335–338.

[16] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-
bit error tolerant caches using two-dimensional error coding,” in
International Symposium on Microarchitecture, 2007, pp. 197–209.

[17] X. Li, W. Qian, M. D. Riedel, K. Bazargan, and D. J. Lilja, “A recon-
figurable stochastic architecture for highly reliable computing,” in
Great Lakes Symposium on VLSI, 2009, pp. 315–320.

[18] W. Qian, M. D. Riedel, K. Barzagan, and D. Lilja, “The synthesis
of combinational logic to generate probabilities,” in International
Conference on Computer-Aided Design, 2009, pp. 367–374.

[19] G. Lorentz, Bernstein Polynomials. University of Toronto Press,
1953.

[20] D. Lee, R. Cheung, and J. Villasenor, “A flexible architecture for
precise gamma correction,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15, no. 4, pp. 474–478, 2007.

[21] J. Ortega, C. Janer, J. Quero, L. Franquelo, J. Pinilla, and J. Serrano,
“Analog to digital and digital to analog conversion based on
stochastic logic,” in International Conference on Industrial Electron-
ics, Control, and Instrumentation, 1995, pp. 995–999.

[22] H. P. Rosinger, Connecting Customized IP to the MicroBlaze
Soft Processor Using the Fast Simplex Link Channel, Xilinx
Inc., 2004. [Online]. Available: http://www.xilinx.com/support/
documentation/application notes/xapp529.pdf

[23] Irotek, “EasyRGB,” 2008. [Online]. Available: http://www.
easyrgb.com/index.php?X=MATH

[24] D. Phillips, Image Processing in C. R & D Publications, 1994.
[25] T. Urabe, “3D examples,” 2002. [Online]. Available: http:

//mathmuse.sci.ibaraki.ac.jp/geom/param1E.html

http://www.xilinx.com/support/documentation/application_notes/xapp529.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp529.pdf
http://www.easyrgb.com/index.php?X=MATH
http://www.easyrgb.com/index.php?X=MATH
http://mathmuse.sci.ibaraki.ac.jp/geom/param1E.html
http://mathmuse.sci.ibaraki.ac.jp/geom/param1E.html

	Introduction
	Stochastic Logic
	Fault Tolerance
	Related Work and Context
	Overview

	Synthesizing Stochastic Logic
	Synthesizing Polynomials
	Synthesizing Non-Polynomial Functions

	The Stochastic Architecture
	The ReSC Unit
	The Randomizer Unit
	The De-Randomizer Unit

	The Error Analysis
	Implementation
	Experimental Results
	A Case Study: Gamma Correction
	Error Analysis
	Hardware Cost Comparison
	Fault Tolerance

	Test Cases
	Hardware Cost Comparison
	Fault Tolerance

	Conclusion
	References

