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11 Abstract

12 Bias in neural network model training datasets has been observed to decrease pre-
13 diction accuracy for groups underrepresented in training data. Thus, investigating
14 the composition of training datasets used in machine learning models with health-
15 care applications is vital to ensure equity. Two such machine learning models are
16 NetMHCpan-4.1 and NetMHCIIpan-4.0, used to predict antigen binding scores to ma-
17 jor histocompatibility complex class I and II molecules, respectively. As antigen pre-
18 sentation is a critical step in mounting the adaptive immune response, previous work
10 has used these or similar predictions models in a broad array of applications, from ex-
20 plaining asymptomatic viral infection to cancer neoantigen prediction. However, these
21 models have also been shown to be biased toward hydrophobic peptides, suggesting
2 the network could also contain other sources of bias. Here, we report the composi-
23 tion of the networks’ training datasets are heavily biased toward European Caucasian
2 individuals and against Asian and Pacific Islander individuals. We test the ability of
25 NetMHCpan-4.1 and NetMHCpan-4.0 to distinguish true binders from randomly gen-
2 erated peptides on alleles not included in the training datasets. Unexpectedly, we fail
27 to find evidence that the disparities in training data lead to a meaningful difference in
2 prediction quality for alleles not present in the training data. We attempt to explain
2 this result by mapping the HLA sequence space to determine the sequence diversity
30 of the training dataset. Furthermore, we link the residues which have the greatest im-
31 pact on NetMHCpan predictions to structural features for three alleles (HLA-A*34:01,
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32 HLA-C*04:03, HLA-DRB1*12:02).
33 Keywords: NetMHCpan, training bias, MHC, HLA, peptide, machine learning,
34 neural networks

s 1 Introduction

5 Antigen presentation by the major histocompatibility complex (MHC) class I and II proteins
s (referred to as HLA in humans) is one of the crucial steps to activating the adaptive immune
3 response, and the genes which encode these proteins are some of the most polymorphic
3 genes in humans [1]. As a result, the epitopes presented to T cells are determined partly
w0 by the binding affinity between the peptide fragment of the antigen and the host-specific
s MHC protein, which is determined by the amino acid sequences of both peptide and MHC.
2 Because of the central role of this process in adaptive immunity, the ability to predict which
s peptides will bind to a given MHC allele has utility in diverse fields. For example, peptide-
s MHC binding predictions have been used to select peptides for a cancer neoantigen vaccine
s and to explain asymptotic SARS-CoV-2 infection in individuals with a specific HLA-B allele
s [2][3]. While molecular dynamics (MD) systems exists for modelling these complexes [4][5],
«r the current consensus is that neural network prediction models are accurate enough at
s predicting binding affinity to be used in clinical settings [6]. Many such tools have been
w0 developed to predict peptide binding to both MHC class I and MHC class 1T [7][8][9][10].
5o Two of neural-network based predictors, NetMHCpan-4.1 and NetMHCIIpan-4.0 (here on
st out collectively referred to as NetMHCpan) are hosted on a popular web server and are fast
52 to return predictions, making them popular choices for predicting peptide-MHC binding
55 [11].

54 However, NetMHCpan does not rely on any structural information about the peptide or
ss  MHC molecule, and only takes an amino acid sequences for the peptide and MHC protein
s as input, which limits the model’s ability to generate mechanistic explanations for its bind-
sz ing predictions Additionally, the tool is closed-source, exacerbating its “black box” nature
ss  and prompting investigations into potential hidden biases. A previous study has shown
o NetMHCpan-4.1 has a previously unreported bias toward predicting hydrophobic peptides
e as strong binders, suggesting the predictions of these models need to be examined closely
o [12].

62 Many times when medical and biological neural network based prediction systems have
6 been evaluated, researchers have uncovered numerous examples of racial bias in machine
o learning algorithms [13][14][15]. Furthermore, datasets from prior genomic studies often fail
e to capture the genetic diversity of the human population, often focusing on individuals of
s European descent, [16][17][18]. As these two significant effects intersect to produce models

o7 that overfit to overrepresented populations, it is vital that neural-network models be care-
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e fully investigated to determine the extent to which there is bias in the training dataset, and
e if it exists, the extent to which this bias affects the model predictions.

70 To determine the impact of training dataset bias on NetMHCpan’s predictions, we exam-
n ined the geographic distribution of NetMHCpan’s training dataset and determined which
7 populations are likely to have alleles not represented in NetMHCpan’s training dataset.
73 We then measured the performance of NetMHCpan on alleles not present in its training
7 dataset, and compared the performance to binding predictions for alleles present in its
7 training dataset. To better understand these predictions, we created a map of HLA se-
% quence space to determine the diversity of the dataset at the sequence level. Finally, for
77 each of three MHC molecules not in NetMHCpan’s training dataset, we determined the
s residues of that molecule that have disproportionate impact on NetMHCpan’s predictions.
70 This paper presents a geographic imbalance in the HLA types present in NetMHCpan’s
s training data, yet fails to find a significant drop in the accuracy of the network’s peptide
a1 binding predictions for alleles not present in the training data compared to the accuracy of
& the models’ prediction on alleles present in the training dataset. Furthermore, the results
s suggest two possible explanations for this finding. First, while the model may be lacking
s in geographic diversity, the alleles represented in the training dataset cover a large range
s of HLA sequences. Second, the model gives attention to residues structurally involved in

s peptide-MHC complexes for novel alleles.

« 2 Materials and Methods

s 2.1 MHC Allele Population Demographics

s Data on HLA allele population frequencies were downloaded from the National Marrow
o Donor Program (NMDP) [19]. The dataset contains HLA-A/B/C/DRB1 population fre-
o1 quencies from n =6.59 million subjects from 21 self-reported racial groups, which are
o2 combined into six larger ethnicity categories, given in Supplementary Table S1. Because
s NetMHCpan uses a motif deconvolution algorithm for training, there exist data points in
o the eluted ligand dataset where a peptide corresponds to multiple MHC alleles [11]. In this
os case, we conservatively counted an allele as present in the training dataset if there is at least

o one positive example of a peptide binding to the associated cell line.

o 2.2 Evaluating NetMHCpan Performance
e 2.2.1 Evaluation Datasets

o In order to evaluate the performance of NetMHCpan, we used a dataset from Sarkizova
wo et. al. [20]. The dataset consists of eluted ligand (EL) data for 31 HLA-A alleles, 40
1w HLA-B alleles, and 21 HLA-C alleles, with a median of 1,860 peptides per allele, generated
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102 by cell lines engineered to express only one HLA type. We excluded HLA-B alleles, as
w3 all forty of the HLA-B alleles had some presence in the NetMHCpan training data. We
14 filtered the remaining peptides to only include 9-mers, and removed any 9-mers included in
s NetMHCpan’s training data from the evaluation set. Of these alleles, 7 (A*24:07, A*34:01,
s A*34:02, A*36:01, C*03:02, C*04:03, and C*14:03) have no representation in NetMHCpan’s
w7 training data (binding affinity or eluted ligand).

108 As no similar dataset exists for MHC class II, we created an evaluation set by download-
0o ing peptides from IEDB [21]. For each allele, the filters used were “Include Positive Assays”,
o  “No T cell assays”, “No B cell assays”, and “MHC Restriction Type: [allele] protein com-
m plex.” To choose DRB1 alleles of interest, we selected alleles for which NetMHCIIpan-4.0
12 had eluted ligand data from a cell line engineered to express only one HLA-DRB1 allele. To
us  obtain data for HLA-DRB1*12:02, we use a eluted ligand dataset from cell line C1R express-
us ing HLA-DR12/DQ7/DP4 [22]. Because the cell line expressed both HLA-DRB1*12:02 and
us  HLA-DRB3*02:02:01, Gibbs Cluster was used to separate the two groups [23] (Supplemen-
ue  tary Figure S1). The group belonging to DRB1*12:02 was identified by the absence of F at
ur  P1, the absence of N at P4, and the presence of Y/F at P9.

118 To provide negative controls for both MHC class I and II, the real peptides were combined
e with randomly generated peptides so that the ground truth peptides made up 1% of the
1o final evaluation set. For the MHC class II dataset, the length distribution of the randomly
121 generated peptides was fixed to be equal to the length distribution of the ground truth
122 peptides. Peptides were generated by choosing each amino acid at random with frequencies

123 corresponding to amino acid frequencies in the human proteome.

e 2.2.2 Log Rank Predictions, Motif Entropy Correction, and AUC

125 As a result of the above preprocessing steps, we obtained a dataset for 31 HLA-A alleles,
1 21 HLA-C alleles, and 11 HLA-DRBI1 alleles, each dataset being made up of 1% pep-
127 tides experimentally verified to bind to the HLA allele in eluted ligand assays, and 99%
s randomly generated peptides (to serve as a control). Random peptides are generated by
1o randomly sampling amino acids using all organism amino acid frequencies [24]. Testing the
10 methods with randomly generated peptides sampled directly from the human proteome did
3 not significantly change the results (Supplementary Figure S2). For each allele, we used
122 NetMHCpan-4.1 or NetMHCIIpan-4.0 to generate an eluted ligand score for each peptide
113 in the training dataset, and ranked all peptides by their EL scores. We then measured
13« performance based on the distribution of log ranks for the experimentally verified peptides.
15 For example, if the model is a perfect predictor, all real peptides will have a log;, rank
s below -2, and if the model is a random predictor, 90% of real peptides will have a log;, rank
17 between 0 and -1.

138 To correct for any discrepancies in difficulty predicting ligands based on selectivity of
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139 the MHC binding motif, we calculated the Shannon entropy of the binding motif for each
w allele as — )" pqlogy(pa), where p, is the frequency of amino acid a in the allele-specific
1w experimentally verified binding peptides. We then performed a linear regression for the log-
12 rank against the entropy, shown in Supplementary Figures S3 and S4. For both MHC class
w3 I and class II, we found alleles with lower entropy (more predictable) motifs were associated
s with better predictions, as expected. Therefore, we created a correction factor for each allele
s measuring the expected difference in predictions compared to the mean, and subtracted that
us from the distributions to be able to compare alleles with different binding motif entropies.
47 Additionally, because MHC class II proteins bind a core motif that can contain additional
s amino acids on the ends that do not affect the binding prediction, we encountered cases in
u  the MHC class II dataset where multiple versions of a peptide contained the same core
150 seqeunce, with minor discrepancies at the start and end of the peptide. Therefore, in this
151 case, we chose to weight the MHC class II peptides based on NetMHCIIpan-4.0’s reported
12 binding core, such that each core was weighted equally.

153 To determine a 95% confidence interval for the difference between the median of the
1.« ranks of the alleles with and without training data, a bootstrap procedure was used. Data
155 were sampled with replacement for a number of times equal to the size of the data, and the
156 difference between the medians of the bootstrap samples was calculated. This was repeated
57 108 times, and the 0.025 and 0.975 quantiles were reported as the 95% confidence interval.
158 Finally, we calculate AUC as the area under the ROC (TPR-FPR) curve. The true
150 positive rate (TPR) is defined by TPR = TP/(TP + FN), and the false positive rate
1w (FPR) is defined by FPR = FP/(FP 4+ TN). True positives are defined as experimentally
w1 verified peptides with a score greater than a given cutoff, and false positives as randomly
12 generated peptides with a score greater than a given cutoff. True negatives are defined as
163 as randomly generated peptides with a score less than a give cutoff, and false negatives as

16a  experimentally verified peptides with a score less than a given cutoff.

e 2.3 MDS of HLA Alleles

16 Using the NMDP frequency database, HLA-A, B, C, and DRBI1 alleles with a frequency
w7 greater than 0.01% in any population were selected (n = 135 HLA-A, n = 258 HLA-B,
s n = 66 HLA-C, n = 118 HLA-DRB1). The IPD-IMGT/HLA alignment tool was used to
10 create an alignment of the selected HLA full protein sequences [25]. In cases where large
o gaps occurred at the beginning or end of the alignment, gaps were filled with the most com-
i mon amino acid occurring at that residue. Similarity between sequences was measured by
w2 summing the values of the PAM100 matrix for each pair of amino acids in the two sequences
ws  [26]. Distance was then measured as the difference between the maximum similarity and the
s computed similarity, normalized so that the maximum distance was reported. Scikit-learn’s
ws  MDS algorithm with default parameters was used to compute the MDS [27][28].
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s 2.4 NetMHCpan Residue Substitution Sensitivity

17 Here, we describe a technique similar to the occlusion sensitivity technique common in the
s field of computer vision. We chose the alleles HLA-A*34:01, HLA-C*04:04. and HLA-
1o DRB1*12:02 for the following experiments, as NetMHCpan performed the poorest on these
10 three alleles. For each allele, we used NetMHCpan to predict the eluted ligand score for
w1 all the experimentally verified peptides, using an unmodified version of the MHC sequence.
12 Next, for residues 1-205 (29-125 for DRB1*12:02), we asked NetMHCpan to predict the
183 eluted ligand score for all experimentally verified peptides, using a version of the MHC
18« sequence where for each residue, each of the other 19 amino acids was substituted. From this,
15 we took the 5 amino acids for which NetMHCpan predicted the lowest scores, and calculated
16 the mean difference between EL scores for the mutated and unmutated predictions, as to
17 investigate the effect of replacing residues with dissimilar amino acids. Repeating this
188 for every residue, we then obtained a metric for the relative importance of the residue to
1.9 NetMHCpan’s predictions. HLA tertiary structures were generated using PANDORA and
wo visualized using PyMOL [4], [29].

w 2.5 Software Versions

102 The following software versions were used: NetMHCpan (4.1), NetMHCIIpan (4.0), PAN-
13 DORA (2.0), GibbsCluster (2.0), PyMol (2.6.0a0), sklearn (1.3.0). For any software that

14 had options for a web-based and local version, a local version was always used.

s 3  Results

w 3.1 Common European Caucasian HLA Types are Overrepresented
107 in NetMHCpan Training Data

18 As neural network prediction biases are often enforced by disparities in the amount of model
109 training data, we first investigate NetMHCpan’s training dataset to determine whether the
20 data is representative of the global population. To do this, we used allele distribution data
20 from the National Marrow Donor Project (NMDP) [19]. Codes for population groups can be
22 found in Supplementary Table S1. For each population, we calculated the fraction of people
203 who have at least one HLA-A/B/C/DRBI allele for which there is no data in NetMHCpan’s
200 training set.

205 There exists a substantial disparity between the most and least represented populations
206 in NetMHCpan’s training dataset. European Caucasian individuals are most likely to see
207 their genotypes represented in the training set, while Southeast Asian, Pacific Islander,

28 South Asian, and East Asian individuals are least likely to have genotypes represented in
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20 the training set (Figure 1). Using the NMDP categories, only 0.4%/0.9%/0.6%/2.6% of Eu-
20 ropean Caucasian individuals have an HLA-A/B/C/DRBI allele not found in NetMHCpan'’s
au training data, while 5.1%/27.7%/12.1%/33.6% of Vietnamese individuals and 30.1%/39.3%/10.8%/16.1%
22 of Filipino individuals have an HLA-A/B/C/DRBI allele not found in NetMHCpan’s train-
a3 ing data.

214 These disparities are not likely to have arisen by chance alone, given the fractions of the
a5 populations for which no data exists are correlated between HLA groups (Supplementary
26 Table S2). For all pairs of groups there exists a positive correlation, with the strongest
a7 correlation between HLA-A and HLA-B (0.750) and the weakest correlation between HLA-A
zs  and HLA-DRBI1 (0.238). Because the disparities are found in all four HLA groups examined
29 and are correlated with each other, this suggests a common systemic factor driving the

20 extreme imbalance of the training dataset.

2 3.2 NetMHCpan-4.1 and NetMHCIIpan-4.0 Accurately Predict Pep-
22 tide Binding to Novel Alleles

23 Because there exists such a vast disparity in the representation of populations in NetMHC-
24 pan’s training data, we hypothesized NetMHCpan is overfitting to the training set, making
25 the model unable to make accurate predictions for peptides binding to novel MHC proteins.
26 Therefore, we investigated whether there is a decrease in prediction quality for HLA se-
27 quences not found in the training data. To do this, we performed an experiment in which
28 NetMHCpan was tasked to predict eluted ligand binding scores for a dataset consisting of
20 1% peptides experimentally verified to bind to their corresponding MHC proteins and 99%
20 randomly generated peptides, as has been commonly used in the literature [30]. We then
2 measured the rank of the predictions for the experimentally verified peptides, which we use
2 as our metric for the accuracy of the predictions (after a correction for motif binding entropy
23 described in the Methods section), as well as the area under the ROC curve for each set of
2 predictions (AUC).

235 We ran the MHC class I peptide experiment on a large HLA class I eluted ligand dataset
26 [20]. In the dataset are n = 39617 peptides for 27 HLA-A and 18 HLA-C alleles with
2 training data in NetMHCpan-4.1’s training set, and n = 8652 peptides for 4 HLA-A alleles
28 and 3 HLA-C alleles without data in NetMHCpan-4.1’s training set. All together, these
29 novel alleles represent up to 28.8% of HLA-A alleles, and up to 11.7% of HLA-C alleles for
20 some populations (Supplementary Figure S5). Because there are no HLA-B alleles present
an in the dataset but absent from NetMHCpan-4.1’s training set, we omit HLA-B from this
22 analysis.

23 NetMHCpan-4.1 accurately recalls experimentally validated peptides from a training
aa  dataset containing validated peptides and randomly generated peptides for these 7 alleles.
xus  For both HLA-A and HLA-C, the allele for which NetMHCpan-4.1 best recalled experimen-
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s tally validated peptides was an allele for which NetMHCpan-4.1 had no data in its training
a7 set (A*24:07 and C*14:03) (Figure 2). Overall, the predictions of binding peptides for the
2s  alleles for which NetMHCpan-4.1 has no training data slightly outperform the predictions
uo  for alleles for which it does have data (Supplementary Figure S6), with a 95% bootstrap
0 confidence interval for the difference in the medians of the two sets being (0.037, 0.063)
1 (Supplementary Figure S7). On average, NetMHCpan-4.1 ranks experimentally verified
»2  peptides for alleles for which data does not exist 1.12 times higher than it ranks peptides
53 which correspond to alleles in its training dataset. In summary, we fail to find evidence that
»4  the imbalance in the training dataset leads a decrease in the quality of NetMHCpan-4.1
x5 predictions for novel alleles.

256 In the case of MHC class II predictions, we focus exclusively on DRB1 because HLA-
7 DR is the only MHC class II protein to vary only in the beta chain, which simplifies the
8 testing process, as we do not have to test combinations of alleles. While a comprehensive
0  eluted ligand dataset exists for the MHC class I peptidome, no analogous dataset exists
%0 for HLA-DRB1. Therefore, we used IEDB to gather data for alleles which were present
s in NetMHCIIpan-4.0’s training data, and data from a recent CIR cell line eluted ligand
% study for peptides binding to DRB1*12:02, an allele not represented in NetMHCIIpan-4.0’s
%3 training set [21][22]. All together, we have n = 45286 peptides from 10 alleles with training
x4 data in NetMHCIIpan-4.0, and n = 32402 peptides from allele DRB1*12:02.

265 In contrast to NetMHCpan-4.1, the predictions generated by NetMHCIIpan-4.0 for pep-
%6 tides corresponding to alleles for which it has no data are slightly worse than average,
s when measured by median log-rank (Supplementary Figure S6). However, when measured
% by AUC, DRB1*!2:02 ranks around average, greater than 6 alleles and less than 4 alle-
%0 les. A 95% bootstrap confidence interval for the difference in the medians between pep-
a0 tides corresponding to alleles with and without data in NetMHCIIpan-4.0’s training set is
o (-0.260, -0.232), with NetMHCIIpan-4.0 on average ranking experimentally validated pep-
o tides 1.8 times lower for the DRB1*12:02 allele (Supplementary Figure S7). However, while
a3 NetMHCIIpan-4.0 makes statistically significantly worse predictions for DRB1*12:02 than
o for the other alleles, the discrepancy between the median log rank of the best performing
a5 allele (DRB1*15:01) and the median log rank of DRB1*12:02 is less than half the interquar-
a6 tile range of the log-ranks of predictions for DRB1*12:02, suggesting the the difference in
ar - prediction quality is relatively minor compared to the variability in predictions for a given
a  allele. Furthermore, there exists an allele with data in NetMHCIIpan-4.0’s training dataset,
29 DRB1*04:04, for which NetMHCIIpan-4.0 is less accurate at distinguishing real peptides
0 than for DRB1*12:02.

281 While problems of skewed datasets have affected quality of numerous other machine
22 learning based predictions algorithms, we find no evidence this is true of NetMHCpan. By

23 testing the ability of NetMHCpan to recall experimentally verified binding peptides to alleles
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ssa for which the algorithm has no training data, we fail to conclude there exists a meaningful
x5 difference between alleles for which NetMHCpan has training data, and those for which it

6 does not.

» 3.3 NetMHCpan Training Data Covers a Large Subset of HLA
268 Allele Space

a0 As alack of diversity in training data often leads machine learning models to overfit to their
20 training set, we seek to understand why this does not appear to be true for NetMHCpan.
2 Therefore, we visualize the training dataset by measuring sequence similarity between HLA
22 alleles with frequency greater than 0.01% in any population, and use these computed simi-
203 larities to perform multidimensional scaling (MDS) in order to visualize the sequence space
24 as a two-dimensional map [28].

205 For all four HLA types measured, alleles tend to organize into clusters, a majority which
26 contain at least one allele with data in NetMHCpan’s training dataset (Figure 4a). This
27 suggests that while NetMHCpan may be missing data for many alleles common in non-
28 European populations, the alleles for which it has data are sufficiently similar to the missing
20 alleles as to allow the model to make reasonable inference about the biochemical properties
a0 of alleles without data.

301 Furthermore, measuring pairwise distances between all alleles provides context for the
s performance of NetMHCpan on novel alleles reported above. While a sample size of n =
3 8 is not large enough to provide numerical estimates with any sort of power, the data
se  qualitatively indicate a potential positive correlation between distance to the nearest allele
w05 and performance (Supplementary Figure S8). To measure the extent to which an allele is
s novel, we calculate the distance to the nearest allele in the training data for each allele
sr - not in NetMHCpan’s training data (4b). Of the eight alleles tested, seven are further from
s the nearest allele present in training data than a majority of the untested alleles, with the
a0 exception being C*14:03 (Supplementary Table S3). Therefore, while the choices of which
a0 alleles without training data to test were driven by data availability, we demonstrate the
s alleles tested are less similar to the training data than other HLA alleles. Thus, the accuracy
sz of NetMHCpan’s predictions for these alleles is not driven by greater than average similarity

a3 of these alleles to alleles found in the training dataset.

2 3.4 NetMHCpan Correctly Identifies MHC Residues Involved in
215 Peptide Binding
a6 Finally, we aim to understand the extent to which NetMHCpan identifies residues struc-

a7 turally involved in peptide binding. As NetMHCpan allows for direct input of an MHC

a8 protein sequence, we perform an experiment in which we mutate each residue of a given
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a0 HLA sequence individually, and measure how much NetMHCpan’s EL scores for experi-
20 mentally verified peptides change compared to the unmodified sequence. We focus on three
s case studies, HLA-A*34:01, HLA-C*04:03, and HLA-DRB1*12:02, as these alleles constitute
22 the worst-performing allele for each HLA type.

323 In each case, the MHC residues which have the greatest impact on NetMHCpan’s predic-
2¢  tion are all residues that make physical contact with the peptide (Figure 5, Supplementary
25 Tables S4-S6). This suggests that the accuracy of NetMHCpan’s predictions on novel alle-
36 les is partly driven by its ability to selectively pay attention to residues involved with the
a7 physical process of binding. Of special interest is the observation that many residues which
s affect the predictions for peptides binding to DRB1*12:02 are residues previously identi-
29 fled to determine the binding motif of DR12, namely, 13G, 57V, 70D, 71R, 74A, and 86V
s0  [22]. Therefore, we conclude NetMHCpan implicitly learns the MHC residues structurally
s involved in binding, and its ability to generalize these findings to novel alleles increases its

3 prediction accuracy.

s 4  Discussion

s We report NetMHCpan fails to include a geographically diverse set of HLA alleles in its
s training data. We find individuals from underrepresented populations, predominantly from
1 Asia, are twenty times more likely to carry HLA alleles not present in NetMHCpan’s train-
a7 ing data. Furthermore, we observe correlation between population representation between
ss  all four alleles measured, suggesting that the dataset bias is a result of systemic underrep-
39 resentation of minority groups in the NetMHCpan training dataset.

340 Numerous previous examples of training dataset racial bias affecting machine learning
s model predictions led us to hypothesize NetMHCpan would make less accurate predictions
s on alleles which were not present in its training dataset [13][14][15]. Furthermore, previous
a3 work showed NetMHCpan is subject to systemic biases regarding hydrophobicity, suggesting
us  that other biases may be lurking [12]. Unexpectedly, we fail to find evidence that there is a
us  substantial difference in the ability of NetMHCpan to discriminate experimentally verified
us  binding peptides from randomly generated peptides. Instead, we observe a slight increase
a7 in the prediction ability for MHC class I alleles with no data present in the training set, and
us only a slight decrease for MHC class II alleles. While both effects are statistically significant,
us  we allege neither is large enough to have a substantial effect on prediction quality.

350 To explain this unexpected result, we characterize the sequence space of common HLA
s alleles. While NetMHCpan’s training dataset fails to include many alleles common in un-
2 derrepresented populations, we show that the alleles for which training data exist are well-
33 distributed throughout sequence space. We thus hypothesize that MHC sequence diversity

s in the training dataset partially explains the failure to observe a drop in prediction quality.
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s Furthermore, we establish a connection between the residues that impact NetMHCpan’s
36 predictions and the residues that physically contact the peptide for three HLA alleles not
7 present in NetMHCpan’s training data.

358 The discrepancies in the diversity of HLA eluted ligand datasets that compelled this
0 study also constitute a major limitation, as only eight novel HLA alleles were tested, with
w0 1o novel HLA-B alleles. Furthermore, our study design was limited to only testing one
1 allele at a time, and so we did not investigate complex effects that could be associated with
2 linkage disequilibrium in MHC class IT molecules formed by two interacting chains, including
s HLA-DQ and HLA-DP [31]. We only tested the ability of NetMHCpan to distinguish
s experimentally verified peptides from randomly generated peptides, and did not perform
s any experiments to characterize the model’s ability to predict binding affinity. Finally,
s NetMHCpan is closed source, and so we were unable to view the internal network structure,
7 needing to rely on an occlusion sensitivity-like metric to determine how the network makes
s predictions.

360 We present evidence of a strong bias in NetMHCpan’s training dataset toward Euro-
s pean Caucasian individuals. While we fail to find evidence this bias affects the accuracy
sn of NetMHCpan’s predictions, the bias in the training dataset highlights the need for MHC
sz eluted ligand datasets that contain data for alleles for underrepresented populations. Fur-
sz thermore, given the outsized impact of NetMHCpan on the training data generated for other
su MHC binding prediction tools, future work must investigate the composition of training
a5 datasets and potential bias in other tools [32]. Finally, we recommend all tools that utilize a
s dataset involving HLA alleles as part of their pipeline clearly report the composition of any
sr  datasets they utilize for training, and perform additional testing in the presence of biased
s training data to ensure model predictions do not substantially decline for underrepresented

379 groups.
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Figure 1: NetMHCpan training data fails to cover common HLA alleles: Pro-
portion of populations (as defined by the National Marrow Donor Program) that have
at least one HLA class A, B, C, or DRBI1 allele with no data in the NetMHCpan-4.1 or
NetMHCIIpan-4.0 training datasets.
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Figure 2: Evaluating NetMHCpan-4.1 performance on novel alleles: NetMHCpan-
4.1 was tasked with separating peptides identified as true binders using LC-MS/MS (from
Sarkizova et. al.) from randomly generated peptides for 52 HLA class I alleles. (A) Alleles
with training data in NetMHCpan-4.1’s training dataset are shown in blue, alleles without
are shown in pink. Performance is measured by the distribution of log ranks of the true
peptides, corrected for entropy of the allele binding motif (lower is better). (B) Area under
the ROC curve (AUC) for each allele.
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Figure 3: Evaluating NetMHCIIpan-4.0 performance on novel alleles:
NetMHCIIpan-4.0 was tasked with separating peptides identified as true binders using LC-
MS/MS (from IEDB) from randomly generated peptides for 10 HLA-DRBI alleles with data
in NetMHCIIpan-4.0’s training set, and one allele without training data. (A) Performance
is measured by the distribution of log ranks of the true peptides, corrected for entropy of
the allele binding motif (lower is better). (B) Area under the ROC curve (AUC) for each
allele.
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Figure 4: Visualizing the training space of NetMHCpan: (A) MDS plot of HLA
alleles, with smaller distances corresponding to greater sequence similarity. Alleles included
in NetMHCpan’s training data are marked with pink triangles, alleles tested in Figures 2
and 3 with no training data are marked with blue squares, and other alleles are marked with
purple circles. Marker size corresponds to maximum frequency of the allele in any NMDP
population (log scale). (B) Histogram of distance to closest allele to data in NetMHCpan’s
training set for all alleles without training data. Alleles previously tested are shown with
vertical dashed blue lines.

Small Impact
on Predictions

Figure 5: Impact of substituting residues on NetMHCpan predictions for HLA
alleles of interest: Structure of (A) HLA-A*34:01 (B) HLA-C*04:03 and (C) HLA-
DRB1*12:02. Residues are colored by impact of substitution on NetMHCpan predictions.
Yellow resides indicate a large change to NetMHCpan predictions when replaced, purple
resides indicate a small change. Sidechains are shown for residues of interest
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