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ABSTRACT
In two-level logic synthesis, the typical input specification is a set
of minterms defining the on set and a set of minterms defining the
don’t care set of a Boolean function. The problem is to synthe-
size an optimal set of product terms, or cubes, that covers all the
minterms in the on set and some of the minterms in the don’t care
set. In this paper, we consider a different specification: instead of
the on set and the don’t care set, we are given a set of numbers,
each of which specifies the number of minterms covered by the in-
tersection of one of the subsets of a set of λ cubes. We refer to the
given set of numbers as an intersection pattern. The problem is to
deterimine whether there exists a set of λ cubes to satisfy the given
intersection pattern and, if it exists, to synthesize the set of cubes.
We show a necessary and sufficient condition for the existence of
λ cubes to satisfy a given intersection pattern. We also show that
the synthesis problem can be reduced to the problem of finding a
non-negative solution to a set of linear equalities and inequalities.

1. INTRODUCTION
Two-level logic synthesis is a well-developed and mature topic [1,

2]. The typical input specification for a two-level synthesis prob-
lem is the on set and the don’t care set (or in some cases, the off set)
of a Boolean function. The on set and the don’t care set consist of
minterms that define when the function evaluates to one and when
its evaluation can be either zero or one, respectively. The problem
is to synthesize an optimal set of product terms, or cubes, that cov-
ers all the minterms in the on set and some of the minterms in the
don’t care set.

In this work, we consider a related yet different problem per-
taining to the synthesis of a set of cubes. A set of cubes, besides
defining a Boolean function, also defines a set of numbers, each of
which corresponds to the number of minterms covered by the in-
tersection of one of the subsets of the set of cubes. For example,
given a set of three cubes on four variables x0, x1, x2, x3, which
are c0 = x0x1, c1 = x2, and c2 = x1x3, the numbers of minterms
covered by c0, c1, c2, c0c1, c0c2, c1c2, and c0c1c2 are 4, 8, 4,
2, 2, 2, and 1, respectively. We refer to this set of numbers as an
intersection pattern.

Given a set of cubes, it is trivial to get its intersection pattern.
However, it is nontrivial to answer the reverse problem: given a set
of numbers that corresponds to an intersection pattern of λ cubes,
how can one synthesize a set of λ cubes to satisfy the given inter-
section pattern, or prove that there is no solution to the given inter-
section pattern? We will call this the λ-cube intersection problem.
It is what we intend to solve in this paper.

Definition 1
Define V (f) to be the number of minterms contained in a Boolean
function f . �

Example 1
In a 3-cube intersection problem on 4 variables x0, x1, x2, x3, if
we are given the intersection pattern as

V (c0) = 4, V (c1) = 8, V (c2) = 4,

V (c0c1) = V (c0c2) = V (c1c2) = 2, V (c0c1c2) = 1,
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we can synthesize cubes c0 = x0x1, c1 = x2, and c2 = x1x3 to
satisfy the intersection pattern. �

We are interested in the λ-cube intersection problem since it per-
tains to synthesis for probabilistic computation, a new paradigm
that we have advocated [3]. In this paradigm, digital circuits are
designed to transform a set of input probabilities, encoded by ran-
dom bit streams, into output probabilities, also encoded by random
bit streams [3]. A fundamental problem in this context is how to
synthesize combinational logic that takes independent inputs with
probability 0.5 of being one and generates other probabilities as
outputs. For example, we can use the combinational circuit shown
in Figure 1 to generate an output probability 3

8
from three indepen-

dent input probabilities 0.5.

0,1,0,1,1,0,1,0 (0.5)

1,0,0,1,0,0,1,1 (0.5)

0,0,1,1,1,0,0,1 (0.5)

1,1,0,0,0,1,0,0 (3/8)

AND
NOR

Figure 1: An AND gate followed by a NOR gate transforms three indepen-
dent random inputs of probability 0.5 of being one into an random output of
probability 3

8
of being one. The inputs and output of the circuit are random

bit streams. The numbers in the parentheses denote the probabilities.

For combinational logic with n inputs with each input indepen-
dently having probability 0.5 of being one, each input combination
has probability of 1

2n
of occurring. If the Boolean function con-

tains exactly m minterms, then the probability that the output is
one is m

2n
. Conversely, if we want to synthesize a probability m

2n

(0 ≤ m ≤ 2n), we can simply implement it with a Boolean func-
tion of m minterms. However, there are

(
2n

m

)
Boolean functions

that contain exactly m minterms and different functions have dif-
ferent implementation cost. This motivates a new problem in logic
synthesis: if we want to synthesize a logic circuit such that it cov-
ers exactlymminterms, while whichmminterms are covered does
not matter, then how can we design an optimal logic circuit?

We focus on two-level implementation of logic circuit [1]. Min-
imizing the area of the two-level implementation is equivalent to
minimizing the number of cubes of the sum-of-product (SOP) rep-
resentation of a Boolean function [1]. Thus, the problem, which we
will refer to as the arithmetic two-level minimization problem, can
be formulated as:

Given the number of variables n for a Boolean function and an
integer 0 ≤ m ≤ 2n, find a SOP Boolean expression with the min-
imum number of cubes that contains exactly m minterms.

For the arithmetic two-level minimization problem, our proposed
solution is based on the inclusion-exclusion principle:

Given λ cubes c0, . . . , cλ−1, the number of minterms cover by the
λ cubes is

V

(
λ−1∨
i=0

ci

)
=

λ−1∑
i=0

V (ci)−
∑
i,j:

0≤i<j≤λ−1

V (cicj)

+
∑
i,j,k:

0≤i<j<k≤λ−1

V (cicjck)− · · ·+ (−1)λ−1V

(
λ−1∏
i=0

ci

)
.

(1)



The inclusion-exclusion principle connects the arithmetic two-
level minimization problem with the λ-cube intersection problem.
Indeed, we intend to apply a search-based approach to solve the
minimization problem. Initially, we will set λ to be a lower bound
on the number of cubes to cover m minterms. Then we will test
whether we can find λ cubes so that they cover m minterms. In or-
der to do so, we will first construct an intersection pattern such that
the sum of the elements in that pattern according to Equation (1)
equals the target value m. Then, we need to check whether we can
find λ cubes to satisfy that intersection pattern. If we find a solu-
tion to that instance of the λ-cube intersection problem, then we
obtain an optimal solution to the arithmetic two-level minimization
problem. If not, we will try another intersection pattern on λ cubes.
After a number of unsuccessful trials, we will increase λ by one.

Example 2
Synthesize an optimal SOP Boolean expression on 4 variables to
cover 11 minterms.

Since we cannot cover 11 minterms with just 1 cube, the lower
bound on the solution is 2 cubes. Thus, initially, we set λ = 2.
For λ = 2, we first construct intersection pattern V (c0), V (c1) and
V (c0c1), so that V (c0)+V (c1)−V (c0c1) = 11. One intersection
pattern is V (c0) = 8, V (c1) = 4 and V (c0c1) = 1. However,
that 2-cube intersection problem has no solution. Thus, we will try
other intersection patterns on 2 cubes which cover 11 minterms.
Indeed, there are no intersection patterns on 2 cubes to cover 11
minterms. Then, we raise λ to 3.

For λ = 3, we first construct intersection pattern V (c0), V (c1),
V (c2), V (c0c1), V (c0c2), V (c1c2) and V (c0c1c2), so that

V (c0) + V (c1) + V (c2)− V (c0c1)− V (c0c2)

− V (c1c2) + V (c0c1c2) = 11.

One intersection pattern is V (c0) = 8, V (c1) = 2, V (c2) = 1
and V (c0c1) = V (c0c2) = V (c1c2) = V (c0c1c2) = 0. For that
3-cube intersection problem, we could synthesize cubes c0 = x0,
c1 = x̄0x1x2 and c2 = x̄0x̄1x̄2x3 to satisfy the given intersection
pattern. Thus, we get an optimal solution of 3 cubes to the original
arithmetic two-level minimization problem. �

2. PRELIMINARIES
In this section, we will first introduce some basic definitions and

then give a formal definition of the λ-cube intersection problem.
Some of the basic definitions are adopted from [4].

The set of n variables of a Boolean function is denoted as
x0, . . . , xn−1. For a variable x, x and x̄ are referred to as literals.
A Boolean product, or cube, denoted by c, is a conjunction of lit-
erals such that x and x̄ do not appear simultaneously. A minterm
is a cube in which each of the n variables appear once, in either its
complemented or uncomplemented form. If cube c2 takes the value
one whenever cube c1 equals one, we say that cube c1 implies cube
c2 and write as c1 ⊆ c2. If cube c1 implies cube c2, then we have
V (c1) ≤ V (c2). If c1 · c2 = 0, we say that cube c1 and c2 are
disjoint.

If a cube c contains k literals (0 ≤ k ≤ n), then the number of
minterms contained in the cube is V (c) = 2n−k. Note that when a
cube contains 0 literals, it is a special cube c = 1, which contains
all minterms in the entire Boolean space. There is another special
cube called empty cube, which is c = 0. The number of minterms
contained in an empty cube is V (c) = 0. Thus, the number of
minterms contained in a cube is in the set S = {s|s = 0 or s =
2k, k = 0, 1, . . . , n}.

To make the representation compact, we use the following defi-
nitions.

Definition 2
Given two integersA andB, let their binary representation beA =∑k−1
i=0 ai2

i and B =
∑k−1
i=0 bi2

i, where ai, bi ∈ {0, 1}. We write
A � B when for any 0 ≤ i ≤ k − 1, ai ≥ bi. �

Definition 3
For a cube c, define c0 = 1 and c1 = c. Given a set of λ cubes
c0, . . . , cλ−1 and an integer Γ =

∑λ−1
i=0 γi2

i, where γi ∈ {0, 1},

defineCΓ to be the intersection of a subset of cubes ci with γi = 1,
i.e., CΓ =

∏λ−1
i=0 c

γi
i . �

Definition 4
Given an integer Γ =

∑λ−1
i=0 γi2

i, where γi ∈ {0, 1}, define B(Γ)
to be the number of ones in the binary representation of Γ, i.e.,
B(Γ) =

∑λ−1
i=0 γi. �

With the above definition, we can more formally define the λ-
cube intersection problem as follows:

Given n > 0, λ > 0, and 2λ− 1 numbers v1, v2, . . . v2λ−1 ∈ S =

{s|s = 0 or s = 2k, k = 0, 1, . . . , n}, determine whether there
exists a set of λ cubes c0, . . . , cλ−1 on n variables x0, . . . , xn−1,
such that for any 1 ≤ Γ ≤ 2λ − 1, V (CΓ) = vΓ.

We refer to the vector of numbers (v1, . . . , v2λ−1) as an inter-
section pattern on λ cubes, or simply as an intersection pattern.
If a set of λ cubes c0, . . . , cλ−1 satisfies the property that for any
1 ≤ Γ ≤ 2λ − 1, V (CΓ) = vΓ, then we say that the set of cubes
satisfies the intersection pattern (v1, . . . , v2λ−1).

Since it is more meaningful to consider a set of nonempty cubes
c0, . . . , cλ−1, we assume that for any 0 ≤ i ≤ λ − 1, v2i =
V (ci) > 0. Further, notice that V (C0) = 2n. We let v0 = 2n.

Based on the given intersection pattern, we define some sets as
follows.

Definition 5
Let the set P be the set of numbers Γ such that vΓ > 0 and let the
set Z be the set of numbers Γ such that vΓ = 0, i.e.,

P = {Γ|0 ≤ Γ ≤ 2λ − 1 and vΓ > 0},
Z = {Γ|0 ≤ Γ ≤ 2λ − 1 and vΓ = 0}.

For any 0 ≤ i ≤ λ, let the set Pi be the set of numbers Γ such
that the number of ones in the binary representation of Γ is i and
vΓ > 0, and let the set Zi be the set of Γ such that the number of
ones in the binary representation of Γ is i and vΓ = 0, i.e.,

Pi = {Γ|0 ≤ Γ ≤ 2λ − 1, B(Γ) = i, and vΓ > 0},
Zi = {Γ|0 ≤ Γ ≤ 2λ − 1, B(Γ) = i, and vΓ = 0}. �

From the definition of P and Z, we have the following obvious
lemma, which gives a necessary condition on the existence of λ
cubes to satisfy the given intersection pattern.

Lemma 1
If λ cubes c0, . . . , cλ−1 satisfy the given intersection pattern, then
for any Γ ∈ P , CΓ 6= 0 and for any Γ ∈ Z, CΓ = 0. �

For any Γ ∈ P , we define a number kΓ as follows.

Definition 6
For any Γ ∈ P , define kΓ = log2(vΓ). �

Since vΓ ∈ S = {s|s = 0 or s = 2k, k = 0, 1, . . . , n}, thus for
any Γ ∈ P , kΓ is an integer and 0 ≤ kΓ ≤ n.

For convenience, we represent a cube as a cube-variable row
vector and a set of cubes as a cube-variable matrix. These are
defined as follows.

Definition 7
Given a nonempty cube c on n variables x0, . . . , xn−1, we repre-
sent it by a cube-variable row vectorU of length n, whose elements
are from the set {0, 1, ∗}. If the j-th (0 ≤ j ≤ n − 1) element
Uj = 1, then the literal xj appears in the cube c; if Uj = 0, then
the literal x̄j appears in the cube c; if Uj = ∗, then the cube c does
not depend on the variable xj .

Given a set of λ nonempty cubes c0, . . . , cλ−1 on n variables
x0, . . . , xn−1, we represent them by a cube-variable matrix D of
size λ × n, so that the i-th row of the matrix is the cube-variable
row vector of ci. �



For example, a set of two cubes c0 = x0x̄1 and c1 = x̄0x2 is
represented as a cube-variable matrix[

1 0 ∗
0 ∗ 1

]
Given a cube-variable row vector, the following simple lemma

suggests how to obtain the number of minterms covered by the cor-
responding cube.

Lemma 2
If the cube-variable row vector of a nonempty cube contains k ∗’s,
then the cube covers 2k number of minterms. �

Definition 8
The negation of 0, 1 and ∗ are defined as 1, 0 and ∗, respec-
tively. The negation of a cube-variable matrix (column vector) is
the element-wise negation of the matrix (column vector). �

In what follows, we will say that a cube-variable matrix satis-
fies the given intersection pattern if the corresponding set of cubes
satisfies the intersection pattern. The following lemma is straight-
forward.

Lemma 3
Suppose that a cube-variable matrixD satisfies the intersection pat-
tern (v1, . . . , v2λ−1). Then D′ satisfies the same intersection pat-
tern if D′ is obtained from D by column permutation or column
negation. �

Before we go through the details of our proposed solution, we
will briefly talk about the basic idea of our solution. Our solution
is a column-based method: To synthesize a cube-variable matrix
is equivalent to determine what each column of the matrix should
be. Since each entry of the matrix is in the set {0, 1, ∗}, each col-
umn, which has λ entries, has totally 3λ choices. Indeed, by the
symmetry between different column choices and the disjoint rela-
tion among some cubes, we only need to consider a small subset
of all 3λ column choices as the candidate choices. Furthermore,
by Lemma 3, since the order of the column does not matter, we
only need to determine the number of occurrences of each can-
didate column choice in the cube-variable matrix, which we treat
as unknowns. We establish a system of equations over those un-
knowns and the given intersection pattern. The λ-cube intersection
problem can be solved by finding a non-negative solution to the
system of equations.

3. A SPECIAL CASE OF THE λ-CUBE
INTERSECTION PROBLEM

Here we consider a specific case in which v2λ−1 > 0. First, we
have the following theorem, which gives a necessary condition for
λ cubes to satisfy the given intersection pattern.

Theorem 1
If v2λ−1 > 0 and there exist λ cubes to satisfy the λ-cube intersec-
tion problem, then for any 0 ≤ Γ ≤ 2λ − 1, Γ ∈ P . �

PROOF. Based on Definition 3, for any 0 ≤ Γ ≤ 2λ − 1,
C2λ−1 ⊆ CΓ. Therefore,

0 < v2λ−1 = V (C2λ−1) ≤ V (CΓ) = vΓ.

By the definition of the set P , we have Γ ∈ P .

In what follows, we will assume that there exist λ cubes to satisfy
the given intersection pattern. Without loss of generality, we could
assume that each entry of the cube-variable matrix is either 1 or ∗.
Since

∏λ−1
i=0 ci 6= 0, then for each column of the matrix D, it does

not simultaneously contain both a 0 and a 1. Otherwise,
∏λ−1
i=0 ci =

0. Therefore, each column of the matrix D contains either only
0’s and ∗’s or only 1’s and ∗’s. By Lemma 3, if we negate those
columns of the matrix D that contain only 0’s and ∗’s, then the
new matrixD′ obtained still satisfies the given intersection pattern.

The matrix D′ only contains 1’s and ∗’s. Thus, we could assume
that each column of the cube-variable matrix is in the set {1, ∗}λ.
The set {1, ∗}λ contains 2λ elements. We denote those elements
as ψ0, ψ1, . . . , ψ2λ−1 with the help of the following definition.

Definition 9
Given any 0 ≤ Γ ≤ 2λ − 1, suppose that Γ =

∑λ−1
i=0 γi2

i, where
γi ∈ {0, 1}. Define ψΓ to be a column vector of length λ with
entries from the set {1, ∗}, such that the i-th element (0 ≤ i ≤
λ− 1) of ψΓ is 1 if γi = 0 and is ∗ if γi = 1.

Define the set Ψ = {ψ0, ψ1, . . . , ψ2λ−1}. �

For example, if λ = 3, thenψ0 = (1, 1, 1)T 1 andψ5 = (∗, 1, ∗)T .
The basic idea of our proposed solution is to determine which

column patterns from the set Ψ should be presented in the cube-
variable matrix. Indeed, as pointed out in Section 2, we only need
to determine how many column patterns of the form ψΓ are pre-
sented in the matrix. We define the number of occurrences of col-
umn pattern ψΓ as zΓ.

Definition 10
For any 0 ≤ Γ ≤ 2λ − 1, define JΓ to be the set of indices of the
columns in the matrixD of the form ψΓ, i.e., JΓ = {j|D·j = ψΓ}.
Define zΓ to be the cardinality of the set JΓ. �

The following theorem gives relation between {z0, . . . z2λ−1}
and {k0, . . . , k2λ−1}.

Theorem 2
For any 0 ≤ L ≤ 2λ − 1, we have

kL =
∑

0≤Γ≤2λ−1:Γ�L

zΓ. (2)

�

PROOF. Since the total number of columns in matrix D is n,
we have

∑2λ−1
Γ=0 zΓ = n = k0, or

∑
0≤Γ≤2λ−1:Γ�0

zΓ = k0. Thus,

Equation (2) holds for L = 0.
Now consider 1 ≤ L ≤ 2λ − 1. Then L can be represented as

L =
∑r−1
j=0 2lj , where 1 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤

λ − 1. Then, CL represents the intersection of the set of cubes
cl0 , . . . , clr−1 . The i-th entry in the cube-variable row vector of
their intersection CL is ∗ if and only if the column D·i has ∗’s
on the row l0, l1, . . . , lr−1. Therefore, the number of ∗’s in the
cube-variable row vector of their intersection CL is the number of
columns in D, whose entries on the row l0, l1, . . . , lr−1 are all ∗’s,
or ∑

0≤Γ≤2λ−1:
(ψΓ)l0=···=(ψΓ)lr−1=∗

zΓ.

On the other hand,by Lemma 2, since V (CL) = 2kL , the num-
ber of ∗’s in the cube-variable row vector of CL is kL. Therefore,
we have

kL =
∑

0≤Γ≤2λ−1:
(ψΓ)l0=···=(ψΓ)lr−1=∗

zΓ =
∑

0≤Γ≤2λ−1:
γl0=···=γlr−1=1

zΓ, (3)

where L =
∑r−1
j=0 2lj and Γ =

∑λ−1
i=0 γi2

i.
By Definition 2, we can rewrite Equation (3) as

kL =
∑

0≤Γ≤2λ−1:Γ�L

zΓ.

1The superscript T here means the transpose of a matrix.



Note that Equation (2) is a linear equation in z0, . . . , z2λ−1 and
holds for all 0 ≤ L ≤ 2λ − 1. Therefore, we can derive a system
of 2λ linear equations on unknowns z0, . . . , z2λ−1:∑

0≤Γ≤2λ−1:Γ�L

zΓ = kL, for L = 0, 1, . . . , 2λ − 1. (4)

We can represent the above system of linear equations in matrix
form, as shown by the following theorem.

Theorem 3
Let vector~k = (k0, . . . , k2λ−1)T and vector ~z = (z0, . . . , z2λ−1)T .
Then we can represent the system of 2λ linear equations (4) in ma-
trix form as

Rλ~z = ~k, (5)

whereRλ is a 2λ×2λ square matrix recursively defined as follows:

R1 =

[
1 1
0 1

]
, Ri =

[
Ri−1 Ri−1

0 Ri−1

]
, for i = 2, . . . , λ. �

Due to space constraints, we omit the proof.
It is not hard to see that det(Rλ) = 1. Therefore, Rλ is invert-

ible. The following theorem shows what R−1
λ is.

Theorem 4
R−1
λ is recursively defined as follows:

R−1
1 =

[
1 −1
0 1

]
, R−1

i =

[
R−1
i−1 −R−1

i−1

0 R−1
i−1

]
, for i = 2, . . . , λ. �

Therefore, given k0, k1, . . . , k2λ−1, we can get z0, z1, . . . , z2λ−1

as ~z = R−1
λ
~k.

Since for any 0 ≤ Γ ≤ 2λ − 1, zΓ is the cardinality of the set
JΓ, therefore, zΓ must be a non-negative integer. By Theorem 4,
R−1
λ is an integer matrix. Therefore, z0, . . . , z2λ−1 are always in-

tegers. Thus, a necessary condition for the existence of λ cubes to
satisfy the given intersection pattern is that the vector R−1

λ
~k has all

entries non-negative. On the other hand, from Equation (5), we can
see that the intersection pattern (2k1 , . . . , 2

k2λ−1) only depends
on z0, . . . , z2λ−1. Therefore, as long as the vector R−1

λ
~k has all

entries non-negative, there exist λ cubes to satisfy the given inter-
section pattern. In summary, we have the following corollary.

Corollary 1
The necessary and sufficient condition for the existence of λ cubes
to satisfy the given intersection pattern is that the vector R−1

λ
~k

has all entries non-negative, where ~k = (k0, k1, . . . , k2λ−1)T and
R−1
λ is defined in Theorem 4. �

Example 3
Given v1 = 4, v2 = 4, and v3 = 1, determine whether there exists
a set of 2 cubes c0 and c1 on 4 variables to satisfy the intersection
pattern (v1, v2, v3).
Solution: From the given conditions, we have ~k = (4, 2, 2, 0)T .
Since

R−1
2 =

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

 ,
then by Equation (5), we get ~z = (0, 2, 2, 0)T . Therefore, there
are two ψ1’s and two ψ2’s in the cube-variable matrix of c0 and c1.
One realization of the cube-variable matrix is[

∗ ∗ 1 1
1 1 ∗ ∗

]
and the corresponding cubes are c0 = x2x3 and c1 = x0x1. �

4. GENERAL λ-CUBE INTERSECTION
PROBLEM

In this section, we consider the more general situation where
v2λ−1 ≥ 0.

4.1 Necessary Conditions on the Positive vΓ’s
We first have the following theorem applicable for numbers vΓ >

0.

Theorem 5
If there exist λ cubes c0, . . . , cλ−1 to satisfy the intersection pat-
tern, then for any 1 ≤ L ≤ 2λ − 1 such that vL > 0, we have that
for any 1 ≤ Γ ≤ 2λ − 1 such that L � Γ, vΓ > 0. �

PROOF. For any 1 ≤ Γ ≤ 2λ−1 such that L � Γ, it is not hard
to see that CL ⊆ CΓ. Therefore, 0 < vL = V (CL) ≤ V (CΓ) =
vΓ.

If a set of cubes is pairwise non-disjoint, then it has the following
property.

Lemma 4
If a set of r cubes cl0 , . . . , clr−1 (3 ≤ r ≤ λ, 0 ≤ l0 < · · · <
lr−1 ≤ λ − 1) is pairwise non-disjoint, i.e., for any 0 ≤ i < j ≤
r − 1, cli · clj 6= 0, then their intersection

∏r−1
i=0 cli is nonempty.

�

PROOF. By contraposition, suppose that
∏r−1
i=0 cli = 0. Con-

sider the cube-variable matrix on these r cubes. Since their inter-
section is empty, there exists a column in the matrix that contains
both a 0 and a 1. The cube corresponding to the 0 entry and the
cube corresponding to the 1 entry are disjoint. This contradicts the
assumption that the given set of cubes is pairwise non-disjoint.

Alternatively, Lemma 4 can be stated on the numbers vΓ. This
gives a necessary condition for the existence of a set of cubes to
satisfy the given intersection pattern.

Theorem 6
Suppose that there exist λ cubes c0, . . . , cλ−1 to satisfy the given
intersection pattern. If a set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 <
· · · < lr−1 ≤ λ − 1 satisfies that for any 0 ≤ i < j ≤ r − 1,
v

(2li+2
lj )

> 0, then for L =
∑r−1
i=0 2li , vL > 0. �

For example, suppose that in a 4-cube intersection problem we
are given v3 > 0, v9 > 0, and v10 > 0. If there exist 4 cubes
to satisfy the given intersection pattern, then since V (c0c1) > 0,
V (c0c3) > 0, and V (c1c3) > 0, we must have v11 = V (c0c1c3) >
0.

If both the conditions in Theorem 5 and 6 are satisfied, then we
have the following theorem, which will play an important role in
proving the necessary and sufficient condition later.

Theorem 7
Suppose that the given intersection pattern satisfies that

1. For any 1 ≤ L ≤ 2λ − 1, if vL > 0, then for any 1 ≤ Γ ≤
2λ − 1 such that L � Γ, vΓ > 0.

2. For any set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · <
lr−1 ≤ λ− 1, if it satisfies that for any 0 ≤ i < j ≤ r − 1,
v

(2li+2
lj )

> 0, then for the number L =
∑r−1
i=0 2li , vL > 0.

Then, a necessary and sufficient condition for a set of λ nonempty
cubes to satisfy the condition that for any Γ ∈ P , CΓ 6= 0 and for
any Γ ∈ Z, CΓ = 0 is that for any Γ ∈ P2, CΓ 6= 0 and for any
Γ ∈ Z2, CΓ = 0. �

Due to space constraints, we omit the proof.



4.2 Compatible Column Pattern Set
In the general case, the cube-variable matrix consists of 0, 1 and
∗ and so does each column of the matrix. There are totally 3λ

different choices of patterns for each column. However, not all
combinations of 0, 1 and ∗ as a column vector can be presented in
the matrix. For example, if the given intersection pattern indicates
that ci · cj 6= 0, then those column patterns that have a 0 on the i-th
entry and a 1 on the j-th entry cannot be presented in the matrix. On
the other hand, some kinds of column patterns must be presented
at least once in the matrix. For example, if the given intersection
pattern indicates that ci · cj = 0, then at least one of the column
patterns that have a 0 on the i-th entry and a 1 on the j-th entry or
have a 1 on the i-th entry and a 0 on the j-th entry must be presented
in the matrix. In this section, we will show what kind of column
patterns can be presented in the matrix. For this purpose, we first
introduce the compatible column pattern set for numbers Γ ∈ Z2.

Definition 11
Suppose that Γ ∈ Z2 and Γ = 2i + 2j , where 0 ≤ i < j ≤
λ−1. The compatible column pattern set for Γ is the set of column
vectors W of length λ with entries from the set {0, 1, ∗}, such that

1. Wi = 0 and Wj = 1 or Wi = 1 and Wj = 0,

2. for any number L ∈ P2 such that L = 2k + 2l, where 0 ≤
k < l ≤ λ − 1, the situation that Wk = 0 and Wl = 1 or
Wk = 1 and Wl = 0 does not happen. �

It is not hard to see that if a cube-variable column vector is in the
compatible column pattern set for a Γ ∈ Z2, then the negation of
that cube-variable column vector is also in that set. Therefore, we
define the representative compatible column pattern set as follows.

Definition 12
The representative compatible column pattern set ρΓ for Γ ∈ Z2

is a subset of the compatible column pattern set for Γ such that the
first non-∗ entry of each element in the representative set is 0. �

Example 4
Consider a 4-cube intersection problem with

P2 = {(0011)2, (0101)2, (1001)2},
Z2 = {(0110)2, (1010)2, (1100)2}.

The compatible column pattern set for Γ = (0110)2 ∈ Z2 is

{(∗010)T , (∗101)T , (∗011)T , (∗100)T , (∗01∗)T , (∗10∗)T }.

The representative compatible column pattern set for
Γ = (0110)2 is {(∗010)T , (∗011)T , (∗01∗)T }. �

Definition 13
We define the set Y as the union of the representative compatible
column pattern sets ρΓ for all Γ ∈ Z2, i.e., Y =

⋃
Γ∈Z2

ρΓ. We
define the set F = Y ∪Ψ. �

The following lemma shows that only those column patterns in
the set F are needed to construct the cube-variable matrix.

Lemma 5
If there exists a cube-variable matrixD to satisfy the given intersec-
tion pattern, then there exists another matrixD′ which also satisfies
the given intersection pattern and each column of which is in the set
F . �

PROOF. First, we argue that for any column of D which con-
tains both a 0 and a 1 entry, the column is in the compatible column
pattern set of a certain Γ ∈ Z2. In fact, if a column r (0 ≤ r ≤
n − 1) of D has the i-th entry being 0 and the j-th entry being 1,
where 0 ≤ i, j ≤ λ− 1 and i 6= j, then it is not hard to show that
the column is in the compatible column pattern set for the number
(2i + 2j) ∈ Z2.

We can construct a D′ from D as follows. For any column 0 ≤
r ≤ λ− 1:

1. If D·r contains only 1’s and ∗’s, we let D′·r be D·r . Then
D′·r is in the set Ψ.

2. If D·r contains only 0’s and ∗’s, we let D′·r be the negation
of the column D·r . Then D′·r is in the set Ψ.

3. If D·r contains both a 0 and a 1 and the first non-∗ entry of
D·r is 0, we let D′·r be D·r . Then, there exists a Γ ∈ Z2

such that D′·r is in the set ρΓ.

4. If D·r contains both a 0 and a 1 and the first non-∗ entry
of D·r is 1, we let D′·r be the negation of the column D·r .
Then, there exists a Γ ∈ Z2 such that D′·r is in the set ρΓ.

Then, by the above construction, each column of D′ is in the set
F . Further, D′ is obtained from D by column negations. Thus, by
Lemma 3, D′ also satisfies the given intersection pattern.

Based on Lemma 5, we only need to answer whether there exists
a cube-variable matrix with columns from the set F to satisfy the
given intersection pattern. The following lemma states that if such
a matrix exists, then for each Γ ∈ Z2, at least one of the column
pattern elements from the set ρΓ must be presented in that matrix.

Lemma 6
If a cube-variable matrix D with columns from the set F satisfies
the given intersection pattern, then for any Γ ∈ Z2, there exists a
column in D which is in the set ρΓ. �

PROOF. For any Γ ∈ Z2, suppose that Γ = 2i + 2j , where
0 ≤ i < j ≤ λ − 1. Since the cube-variable matrix satisfies the
given intersection pattern, then based on Lemma 1, for the Γ ∈ Z2,
we must have CΓ = 0 or ci · cj = 0. Thus, there must exist a
column r in D, such that Dir = 0 and Djr = 1 or Dir = 1 and
Djr = 0. Now consider any L ∈ P2. Suppose that L = 2k + 2l,
where 0 ≤ k < l ≤ λ − 1. Since the necessary condition for the
cube-variable matrix to satisfy a given intersection pattern is that
for the L ∈ P2, CL 6= 0, the situation that Dkr = 0 and Dlr = 1
or Dkr = 1 and Dlr = 0 cannot happen. Therefore, the column r
of D is in the compatible column pattern set for Γ. Further, since
all the columns of D are in the set F , then column r must be in the
set ρΓ.

4.3 A Necessary and Sufficient Condition
In this section, we will show a necessary and sufficient condition

for the existence of a set of cubes to satisfy the given intersection
pattern. As a byproduct, the proof provides a way of synthesizing
a set of cubes to satisfy the given intersection pattern. Based on
Lemma 5, we only need to consider cube-variable matrix that con-
sists of column patterns from the set F . The basic idea to solve the
general case problem is similar to that applied in the special case
— we will establish relations between the numbers of occurrences
of those elements of the set F in the cube-variable matrix and the
kΓ’s. First, we define root cube-variable matrix, which links the
general case problem to the special case problem we discussed in
Section 3.

Definition 14
Given a cube-variable matrix D on λ cubes c0, . . . , cλ−1, we de-
fine root cube-variable matrix t(D) of D as the cube-variable ma-
trix formed by replacing the 0 entries in D with 1’s and keeping
the other entries in D unchanged. The set of cubes c′0, . . . , c′λ−1
corresponding to the root matrix is called the set of root cubes to
the original set of cubes. �

For example, the root matrix of the cube-variable matrix[
1 0 ∗
0 ∗ 1

]
is

[
1 1 ∗
1 ∗ 1

]
.

The set of root cubes is c′0 = x0x1 and c′1 = x0x2.
Based on the definition of the set of root cubes, it is not hard to

prove the following lemma.



Lemma 7
Suppose that the set of root cubes to the set of original cubes
c0, . . . , cλ−1 is c′0, . . . , c′λ−1. Then, for any Γ ∈ P , we have
V (C′Γ) = V (CΓ). �

Since the root matrix t(D) is a matrix containing only 1’s and
∗’s, we can apply the definition of zΓ in Definition 10 to t(D).
Then, based on the fact that for any Γ ∈ P , V (C′Γ) = V (CΓ) =
2kΓ , it is not hard to show that the following theorem characterizing
the relation between zΓ’s and kL’s holds.

Theorem 8
If there exist λ cubes to satisfy the given intersection pattern, then
for any L ∈ P ,

∑
0≤Γ≤2λ−1:Γ�L

zΓ = kL, where zΓ’s are defined

on the root matrix t(D) according to Definition 10. �

By the similar definition of root cube-variable matrix, we define
root column vector as follows.

Definition 15
Given a column vector W with each element in the set {0, 1, ∗},
define its root column vector t(W ) as the column vector obtained
from W by replacing the 0 entries in W with 1’s and keeping the
other entries in W unchanged. �

Based on the definition of the root column vector, we can regroup
the elements in the set Y according to their root column vectors,
which results to the following definition. The relation between the
elements in the set Y and their root column vectors will be used
later to derive a set of inequalities on the numbers of occurrences
of the elements of the set F in the cube-variable matrix (See Theo-
rem 9).

Definition 16
We define the setM to be the set of numbers 0 ≤ Γ ≤ 2λ−1 such
that there exists an element in the set Y , whose root column vector
is ψΓ, i.e.,

M = {Γ|0 ≤ Γ ≤ 2λ − 1, s.t. ∃W ∈ Y s.t. t(W ) = ψΓ}.

Define M as M = {Γ|0 ≤ Γ ≤ 2λ − 1,Γ 6∈M}.
For any Γ ∈ M , we define the set YΓ to be the set of elements

in the set Y such that their root column vectors are ψΓ, i.e., YΓ =
{W |W ∈ Y and t(W ) = ψΓ}. �

Notice that the sets YΓ (Γ ∈M) form a partition of the set Y .

Example 5
For the intersection pattern shown in Example 4, we have Z2 =
{6, 10, 12} and

ρ6 = {(∗010)T , (∗011)T , (∗01∗)T },
ρ10 = {(∗001)T , (∗011)T , (∗0 ∗ 1)T },
ρ12 = {(∗010)T , (∗001)T , (∗ ∗ 01)T }.

Thus,

Y = {(∗010)T , (∗001)T , (∗011)T , (∗ ∗ 01)T , (∗0 ∗ 1)T , (∗01∗)T },
M = {1, 3, 5, 9},

and Y1 = {(∗010)T , (∗001)T , (∗011)T }, Y3 = {(∗∗01)T }, Y5 =
{(∗0 ∗ 1)T }, and Y9 = {(∗01∗)T }. �

Based on Lemma 5, we could assume that each column of the
cube-variable matrix is from the set F = Y ∪ Ψ. To solve the
general case problem, we only need to determine the number of
occurrences of each element of the set F in the cube-variable ma-
trix. In order to establish equations, we first define the number of
occurrences of each element of the set Y in the cube-variable ma-
trix, which is actually defined on each partition YΓ of Y , as stated
by the following definition.

Definition 17
For any Γ ∈M , we let the |YΓ| elements in the set YΓ be
δΓ,0, . . . , δΓ,|YΓ|−1. For any 0 ≤ i ≤ |YΓ| − 1, we define KΓ,i to
be the set of indices of the columns in the matrixD of the form δΓ,i,
i.e., KΓ,i = {k|D·k = δΓ,i}. We define wΓ,i to be the cardinality
of the set KΓ,i. �

The following theorem establishes a set of linear inequalities on
wΓ,i’s and zΓ’s, where zΓ’s are defined on the root matrix accord-
ing to Definition 10.

Theorem 9
Suppose that there exists a cube-variable matrix D to satisfy the
given intersection pattern, whose columns are from the setF . Then,
we have that for any Γ ∈M ,

|YΓ|−1∑
i=0

wΓ,i ≤ zΓ, (6)

where zΓ’s are defined on the root matrix t(D) according to Defi-
nition 10. We also have that for any L ∈ Z2,∑

Γ∈M,0≤i≤|YΓ|−1:
δΓ,i∈ρL

wΓ,i ≥ 1. (7)

�

PROOF. Consider any Γ ∈M . For any number k ∈
⋃|YΓ|−1
i=0 KΓ,i,

the column vector D·k is in the set YΓ. Thus, the root column
vector of D·k is ψΓ. Thus, k ∈ JΓ, where JΓ is defined on the
root matrix t(D). Therefore,

⋃|YΓ|−1
i=0 KΓ,i ⊆ JΓ. As a result,∣∣∣⋃|YΓ|−1

i=0 KΓ,i

∣∣∣ ≤ |JΓ|, or
∑|YΓ|−1
i=0 wΓ,i ≤ zΓ.

By Lemma 6, for any L ∈ Z2, there exists a column in D which
is in the set ρL. Suppose that column is of the form δΓ∗,i∗ ∈ ρL,
where Γ∗ ∈M and 0 ≤ i ≤ |YΓ∗ | − 1. Thus,

1 ≤ wΓ∗,i∗ ≤
∑

Γ∈M,0≤i≤|YΓ|−1:
δΓ,i∈ρL

wΓ,i.

Example 6
For the intersection pattern given in Example 4, based on the result
shown in Example 5, we have

δ1,0 = (∗010)T , δ1,1 = (∗001)T , δ1,2 = (∗011)T ,

δ3,0 = (∗ ∗ 01)T , δ5,0 = (∗0 ∗ 1)T , δ9,0 = (∗01∗)T .
The set of equations (6) for all Γ ∈M in this example is{

wΓ,0 ≤ zΓ, for any Γ ∈ {3, 5, 9}
w1,0 + w1,1 + w1,2 ≤ z1

The set of equations (7) for all L ∈ Z2 in this example is
w1,0 + w1,2 + w9,0 ≥ 1
w1,1 + w1,2 + w5,0 ≥ 1
w1,0 + w1,1 + w3,0 ≥ 1

�

Finally, combining the conditions of Theorem 5, 6, 8, and 9, we
can derive the following necessary and sufficient condition.

Theorem 10
There exists a cube-variable matrix D to satisfy the given intersec-
tion pattern (v1, . . . , v2λ−1) if and only if

1. for any 1 ≤ L ≤ 2λ − 1, if vL > 0, then for any 1 ≤ Γ ≤
2λ − 1 such that L � Γ, vΓ > 0,

2. for any set of r (3 ≤ r ≤ λ) numbers 0 ≤ l0 < · · · <
lr−1 ≤ λ− 1, if it satisfies that for any 0 ≤ i < j ≤ r − 1,
v

(2li+2
lj )

> 0, then for the number L =
∑r−1
i=0 2li , vL > 0,



3. the system of equations on unknowns z̃Γ (for all 0 ≤ Γ ≤
2λ − 1) and w̃Γ,i (for all Γ ∈M and 0 ≤ i ≤ |YΓ| − 1)∑

0≤Γ≤2λ−1:Γ�L

z̃Γ = kL, for all L ∈ P

|YΓ|−1∑
i=0

w̃Γ,i ≤ z̃Γ, for all Γ ∈M∑
Γ∈M,0≤i≤|YΓ|−1:

δΓ,i∈ρL

w̃Γ,i ≥ 1, for all L ∈ Z2

(8)

has a non-negative integer solution. �

PROOF. “only if” part: Statement 1 in the theorem is due to
Theorem 5 and Statement 2 in the theorem is due to Theorem 6.

SinceD satisfies the given intersection pattern, then by Lemma 5,
there exists another matrix D′ which also satisfies the given inter-
section pattern and each column of which is in the set F . For any
0 ≤ Γ ≤ 2λ − 1, let z̃Γ = zΓ, where zΓ’s are defined on the
root matrix t(D′) according to Definition 10. For any Γ ∈ M and
0 ≤ i ≤ |YΓ|−1, let w̃Γ,i = wΓ,i, where wΓ,i’s are defined on the
matrix D′ according to Definition 17. By Theorem 8 and 9, the set
of numbers z̃Γ and w̃Γ,i satisfies the system of equations (8). Since
z̃Γ is the cardinality of the set JΓ and w̃Γ,i is the cardinality of the
set KΓ,i, therefore, z̃Γ’s and w̃Γ,i’s are all non-negative integers.
Thus, the system of equations (8) has a non-negative solution.

“if” part: Let a non-negative solution to the system of equa-
tions (8) be z̃Γ = zΓ, for all 0 ≤ Γ ≤ 2λ−1, and w̃Γ,i = wΓ,i, for
all Γ ∈ M and 0 ≤ i ≤ |YΓ| − 1. Since for all 0 ≤ Γ ≤ 2λ − 1,
zΓ ≥ 0, for all Γ ∈ M and 0 ≤ i ≤ |YΓ| − 1, wΓ,i ≥ 0, and for
all Γ ∈ M ,

∑|YΓ|−1
i=0 wΓ,i ≤ zΓ, then, we can construct a cube-

variable matrix D so that

1. for all Γ ∈ M , the matrix contains zΓ columns of the form
ψΓ,

2. for all Γ ∈ M , the matrix contains zΓ −
∑|YΓ|−1
i=0 wΓ,i

columns of the form ψΓ, and

3. for all Γ ∈M and all 0 ≤ i ≤ |YΓ| − 1, the matrix contains
wΓ,i columns of the form δΓ,i.

All columns of the matrix D are in the set F . Next, we prove that
the matrix D satisfies the given intersection pattern.

For anyL ∈ Z2, supposeL = 2i+2j , where 0 ≤ i < j ≤ λ−1.
Since

∑
Γ∈M,0≤k≤|YΓ|−1:

δΓ,k∈ρL

wΓ,k ≥ 1, there exists a Γ∗ ∈ M and a

0 ≤ k∗ ≤ |YΓ∗ | − 1, such that δΓ∗,k∗ ∈ ρL and wΓ∗,k∗ ≥ 1.
Therefore, the matrix D contains a column from the set ρL. Based
on the definition of ρL, CL = ci · cj = 0. Thus, for any L ∈ Z2,
CL = 0.

Now consider anyL ∈ P2. SupposeL = 2i+2j , where 0 ≤ i <
j ≤ λ−1. We argue that CL = ci ·cj 6= 0. Otherwise, ci ·cj = 0.
Therefore, there exists a column r in D, such Dir = 0 and Djr =
1 or Dir = 1 and Djr = 0. Since all the columns of D are in the
set F , thus the columnD·r must be in the set Y . However, based on
the definition of representative compatible column pattern set, each
element W in the set Y satisfies that for the L ∈ P2, the situation
thatWi = 0 andWj = 1 orWi = 1 andWj = 0 does not happen.
Therefore, the column D·r does not belong to the set Y . We get a
contradiction. Thus, for any L ∈ P2, we have CL 6= 0.

Since the given intersection pattern satisfies the conditions of
Theorem 7, then, based on Theorem 7, we have that for any Γ ∈ Z,
CΓ = 0 and for any Γ ∈ P , CΓ 6= 0. Thus, for all these Γ ∈ Z,
V (CΓ) = vΓ = 0.

Now consider any L ∈ P . When L = 0, it is not hard to see that
the total number of columns in D is n.

For any L ∈ P and L > 0, L can be represented as L =∑r−1
j=0 2lj , where 1 ≤ r ≤ λ and 0 ≤ l0 < · · · < lr−1 ≤ λ − 1.

Since CL 6= 0, the number of ∗’s in the cube-variable row vec-
tor CL is the number of columns in D, whose entries on the row

l0, l1, . . . , lr−1 are all ∗’s. Note that for any 0 ≤ Γ ≤ 2λ − 1, the
column pattern ψΓ has all entries on the row l0, l1, . . . , lr−1 being
∗’s if and only if Γ � L. Since the root column vector of δΓ,i is
ψΓ, thus for any Γ ∈ M and any 0 ≤ i ≤ |YΓ| − 1, the column
pattern δΓ,i has all entries on the row l0, l1, . . . , lr−1 being ∗’s if
and only if Γ � L. Therefore, the number of columns in D, whose
entries on the row l0, l1, . . . , lr−1 are all ∗’s, is

∑
Γ∈M :
Γ�L

zΓ +
∑

Γ∈M :
Γ�L

zΓ −
|YΓ|−1∑
i=0

wΓ,i

+
∑

Γ∈M :
Γ�L

|YΓ|−1∑
i=0

wΓ,i

=
∑

0≤Γ≤2λ−1:Γ�L

zΓ = kL.

Therefore, the number of ∗’s in the row vector CL is kL. Since
CL 6= 0, by Lemma 2, V (CL) = 2kL . Thus, for any L ∈ P and
L > 0, V (CL) = 2kL = vL.

In summary, the matrix D has n columns and for any 1 ≤ Γ ≤
2λ − 1, V (CΓ) = vΓ. Thus, the matrix D satisfies the given
intersection pattern.

Comment: The above proof provides a way of synthesizing a cube-
variable matrix to satisfy the given intersection pattern when the
three conditions are all satisfied.

Example 7
In a 3-cube intersection problem on 4 variables x0, . . . , x3, sup-
pose that the intersection pattern is given as

v1 = 4, v2 = 4, v3 = 0, v4 = 4, v5 = 1, v6 = 2, v7 = 0.

First, it is not hard to check that both Statement 1 and Statement
2 in Theorem 10 hold for the given pattern.

By convention, v0 = 24 = 16. Therefore, we have

P = {0, 1, 2, 4, 5, 6}, Z = {3, 7},
k0 = 4, k1 = 2, k2 = 2, k4 = 2, k5 = 0, k6 = 1.

For the given intersection pattern, we have Z2 = {3} and ρ3 =
{(01∗)T }.

Thus, Y = {(01∗)T },M = {4} and Y4 = {(01∗)T }. Thus,
δ4,0 = (01∗)T .

The system of equations (8) in this example is

z̃0 + z̃1 + z̃2 + z̃3 + z̃3 + z̃4 + z̃6 + z̃7 = 4,

z̃1 + z̃3 + z̃5 + z̃7 = 2, z̃2 + z̃3 + z̃6 + z̃7 = 2,

z̃4 + z̃5 + z̃6 + z̃7 = 2, z̃5 + z̃7 = 0, z̃6 + z̃7 = 1.

w̃4,0 ≤ z̃4, w̃4,0 ≥ 1

(9)

The above system of equations (9) has a non-negative solution

z̃1 = z̃3 = z̃4 = z̃6 = 1, z̃0 = z̃2 = z̃5 = z̃7 = 0, w̃4,0 = 1.

Thus, Statement 3 in Theorem 10 also holds. Therefore, there
exists a cube-variable matrix to satisfy the given intersection pat-
tern. Based on the proof of Theorem 10, we can synthesize a cube-
variable matrix that satisfies the given intersection pattern based on
the above non-negative solution as[∗ ∗ 0 1

1 ∗ 1 ∗
1 1 ∗ ∗

]
and the corresponding cubes are c0 = x̄2x3, c1 = x0x2, and c2 =
x0x1. It is not hard to verify that the set of cubes c0, c1, c2 satisfies
the given intersection pattern. �

As shown by Theorem 10, a critical step in solving the λ-cube
intersection problem is to find a non-negative solution to the system
of equations (8). The following theorem shows that to find a non-
negative solution to the system of equations (8) is equivalent to find
a non-negative solution to an alternative system of equations with
fewer unknowns and equations.



Theorem 11
The system of equations (8) has a non-negative integer solution if
and only if the system of equations on unknowns ẑΓ (for all Γ ∈
M) and ŵΓ,i (for all Γ ∈M and 0 ≤ i ≤ |YΓ| − 1)

∑
Γ∈M,Γ�L

ẑΓ +
∑

Γ∈M,Γ�L

|YΓ|−1∑
i=0

ŵΓ,i = kL, for all L ∈ P

∑
Γ∈M,0≤i≤|YΓ|−1:

δΓ,i∈ρL

ŵΓ,i ≥ 1, for all L ∈ Z2

(10)

has a non-negative integer solution. �

Due to space constraints, we omit the proof here.
Note that the system of equations (10) has |M | fewer unknowns

and |M | fewer inequalities than the original system of equations (8).
Thus, a certain amount of computation will be saved by solving the
alternative system of equations (10).

5. EXPERIMENTAL RESULTS
We test our algorithm on two-level logic benchmarks that accom-

pany the two-level logic minimizer Espresso [5]. For each bench-
mark, we ignore the output part of the cubes and just set the num-
ber of outputs to be one. We optimize each modified benchmark by
Espresso and then call a program to generate an intersection pattern
file of that benchmark. This intersection pattern file serves as the
input to our program.

We perform two sets of experiments to test our algorithm. In the
first set of experiments, we test our algorithm on solving special
case problems. The major goal is to study the runtime of our al-
gorithm to solve special case problems. The benchmarks we tested
are listed in Table 1. Since just a few benchmarks generate a spe-
cial intersection pattern. We manually create some test cases. For
example, the benchmark mark1_11 is created from the original
benchmark mark1 by deleting five cubes. Notice that by delet-
ing some cubes, the new benchmark still has its intersection of all
cubes nonempty. Not surprisingly, the runtime increases exponen-
tially with the number of cubes λ. This is because the number of
unknowns increases exponentially with λ. However, since the size
of the inputs to our program is O(2λ), which is proportional to
the number of intersections, the runtime complexity compared to
the size of the inputs is linear. Further, for the benchmark shift,
although the number of unknowns is more than 2 million, our algo-
rithm is able to obtain the solution in about 70 seconds.

Table 1: Number of unknowns and runtime for special case problems.

circuit #cubes #inputs #unknowns time (s)
newtpla2 9 10 512 0

in3 10 35 1024 0
mark1_11 11 20 2048 0.01
mark1_12 12 20 4096 0.04
mark1_13 13 20 8192 0.08
mark1_14 14 20 16384 0.2
mark1_15 15 20 32768 0.48
mark1 16 20 65536 1.18

shift_17 17 19 131072 1.73
shift_18 18 19 262144 3.19
shift_19 19 19 524288 7.84
shift_20 20 19 1048576 24.97
shift 21 19 2097152 71.33

In the second set of experiments, we test our algorithm to solve
general case problems. We develop a program that takes an inter-
section pattern file and then write out the system of equations (10).
The output system of equations can be fed into some specialized
programs to solve for non-negative solution. We list the numbers
of unknowns and the numbers of equations on some benchmarks
in Table 2. We compare the number of unknowns obtained by our
method to the number of unknowns of a naive method in which all
3λ combinations of column patterns are taken as unknowns to set
up equations. The number of unknowns generated by our method
and the number of unknowns generated by the naive method are

listed in the fourth column and the fifth column of Table 2, re-
spectively. The ratio of the number of unknowns generated by our
method to that generated by the naive method is listed in the sixth
column. We can see that our algorithm greatly reduced the number
of unknowns: for most of the benchmarks, our method can reduce
more than 95% of unknowns. Thus, we believe that our proposed
algorithm will greatly reduce the runtime to solve the general case
problem compared to the naive method.

Table 2: Number of unknowns and number of equations for general case
problems.

#unknowns #equations
circuit #cubes #inputs our naive ratio

(a) (b) (a/b)
luc 6 8 66 729 0.091 32
br2 6 12 228 729 0.31 22
tms 8 8 262 6561 0.040 69
prom2 9 9 512 19683 0.026 265
br1 10 12 8108 59049 0.137 58
vg2 10 25 1294 59049 0.022 71
exps 12 8 4130 531441 0.008 399
alu1 12 12 4096 531441 0.008 1300
exp 14 8 69470 4782969 0.015 122

newtpla 14 15 127908 4782969 0.027 117

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced a new problem, the λ-cube inter-

section problem: Given a set of numbers corresponding to an in-
tersection pattern of a set of λ cubes, we are asked to synthesize a
set of cubes to satisfy the given intersection pattern, or show that
there is no solution to the problem. We provide a rigorous math-
ematic treatment to this problem and derive a necessary and suf-
ficient condition for the existence of a set of cubes to satisfy the
given intersection pattern. The problem reduces to check whether
a set of linear equalities and inequalities has a non-negative integer
solution.

As we mentioned in the introduction, a solution to the λ-cube
intersection problem is an important step in solving the arithmetic
two-level minimization problem. We are interested in the arith-
metic two-level minimization problem because it applies to synthe-
sis for probabilistic computation. We note that a solution to the
problem could also be useful for generating weighted random test-
ing patterns in built-in self-test (BIST) [6].

In future work, we will apply the techniques proposed in this
paper to develop a general solution to the arithmetic two-level min-
imization problem. We will also study the special structure of the
set of equations we derived in this paper; we will propose an effi-
cient way to find a non-negative solution to these equations.
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