
EE 5393 UMN

Circuits, Computation, and Biology Spring 2015

⊕ ⊕

Homework # 4

Due May 13, 2015 (but accepted until May 18)

1. Linear Threshold Circuits

A linear threshold (LT) f(X) is a Boolean-valued function with Boolean inputs

X = (x1, x2, . . . , xn) such that

f(X) = sgn[F (X)] =

{
1 for F (X) ≥ 0

0 otherwise

An LT gate implements an LT function.

(a) Consider the ADDITION function of two n-bit numbers. Let X = (x0, x1, . . . , xn−1),

Y = (y0, x1, . . . , yn−1) ∈ {0, 1}n. The integer values represented by X and

Y are equal to
∑n−1

i=0 xi2
i and

∑n
i=0 yi2

i, respectively. Let Z = (z0, . . . , zn) ∈
{0, 1}n+1. The integer represented by Z is equal to

∑n
i=0 zi2

i. Design a

circuit with LT gates that implements addition: Z = X + Y .

(b) Consider the COMPARISON function of two n-bit numbers. Let X1 =

(x1, x3, . . . , x2n−1), X2 = (x2, x4, . . . , x2n) ∈ {0, 1}n. The integer values

represented by X1 and X2 are equal to
∑n

i=1 x2i−12
i−1 and

∑n
i=1 x2i2

i−1,

respectively. The COMPARISON function is defined as

C(X1, X2) =

{
1 X1 > X2

0 otherwise.

In other words,

C(X1, X2) = sgn[X1 −X2]

= sgn

[
n∑

i=1

2i−1(x2i−1 − x2i)

]
.

EE 5393, Spring’15 2

2. The Complete Quadratic Function

The Complete Quadratic (CQ) function is the Boolean function that consists

of the XOR of all the
(
n
2

)
possible AND’s between pairs of variables. Namely,

CQ(X) = (x1 ∧ x2)⊕ (x1 ∧ x3)⊕ · · · (xn−1 ∧ xn).

For example,

CQ(x1, x2, x3) = (x1 ∧ x2)⊕ (x1 ∧ x3)⊕ (x2 ∧ x3).

(a) Prove that CQ(X) is a symmetric function. Express CQ(X) as a function

of |X|.

(b) Let |f(X)| be the number of X’s for which f(X) = 1. Calculate |CQ(X)|
for X ∈ {0, 1}n.

(c) Draw a Linear Threshold circuit that computes CQ(x1, x2, x3, x4, x5)

EE 5393, Spring’15 3

3. Cyclic Combinational Circuits

In class we discussed combinational versus sequential circuits. Combinational

circuits are “memoryless”, i.e., the outputs depend only on the present values

of the inputs. Sequential circuits have “memory”, i.e., the outputs may depend

on the past as well as present input values.

In class we analyzed the circuit shown in Figure 1. It has three inputs a, b and

c; six gates, each with fan-in 2, arranged in a single cycle; and six outputs, one

from each gate. We argued that the circuit is combinational and produces the

output functions shown. Note that each function depends on all three input

variables. We argued that any acyclic circuit of fan-in 2 gates that implements

the same output functions must have at least seven gates.

b c b ca a

)(cba +)(bac +)(cab +
cab + cba + bac +

AND AND AND OROROR

Figure 1: circuit

EE 5393, Spring’15 4

(a) Generalize the circuit in the following way.

Construct a circuit with six inputs and six fan-in 3 AND/OR gates such

that each gate produces an output function that depends on all six input

variables. What is the minimum number of fan-in 3 gates that would be

required for an acyclic circuit that implements the same six functions?

Justify your answer.

(b) Construct a circuit with n(d− 1) inputs and 2n fan-in d AND/OR gates,

for n ≥ 3, n odd, and d ≥ 2, such that each gate produces an output

function that depends on all n(d−1) input variables. What is the minimum

number of fan-in d gates that would be required for an acyclic circuit that

implements the same 2n functions? Justify your answer.

(c) Construct a circuit consisting of six fan-in 2 AND/OR/NAND/NOR gates

that implements six of the following eight functions (you choose which six!):

f1 = b(ā + c̄)

f2 = ābc

f3 = ā + b̄ + c

f4 = a + bc

f5 = c(a + b̄)

f6 = c(a + b)

f7 = ā + bc̄

f8 = āc̄ + b̄

(Multiplication represents AND, addition OR, and a bar negation.)

(d) Prove that your circuit in (c) is combinational.

EE 5393, Spring’15 5

4. Synthesis of Cyclic Combinational Circuits

The goal in multilevel logic synthesis is to obtain the best multilevel, struc-

tured representation of a network. The process typically consists of an iterative

application of minimization, decomposition, and restructuring operations. An

important operation is substitution, in which node functions are expressed, or

re-expressed, in terms of other node functions as well as of their original inputs.

Consider the target functions in Figure 2.

f1 = x̄1x2x̄3 + x̄2(x1 + x3)

f2 = x̄1x̄2x̄3 + x1(x2 + x3)

f3 = x̄3(x̄1 + x̄2) + x̄1x̄2

Figure 2: Target functions for synthesis.

Substituting f3 into f1, we get

f1 = f3(x1 + x2) + x̄2x3.

Substituting f3 into f2, we get

f2 = x̄1x̄2x̄3 + x1f̄3.

Substituting f2 and f3 into f1, we get

f1 = x̄2x3 + f̄2f3.

For each target function, we can try substituting different sets of functions. Call

such a set a substitutional set. Different substitutional sets yield alternative

functions of varying cost. In general, augmenting the set of functions available

for substitution leaves the cost of the resulting expression unchanged or lowers

it. (Strictly speaking, this may not always be the case since the algorithms used

are heuristic.)

In existing methodologies, a total ordering is enforced among the functions in

the substitution phase to ensure that no cycles occur. This choice can influence

the cost of the solution. Consider the ordering:

f1 = x̄2x3 + f̄2f3

f2 = x̄1x̄2x̄3 + x1f̄3

f3 = x̄3(x̄1 + x̄2) + x̄1x̄2.

EE 5393, Spring’15 6

This has a cost of 14. (As discussed in class, our cost measure for area is the

number of literals in node expressions.)

Enforcing an ordering is limiting since functions near the top cannot be ex-

pressed in terms of very many others (the one at the very top cannot be ex-

pressed in terms of any others). Dropping this restriction can lower the cost.

For instance, if we allow every function to be substituted into every other, we

obtain:

f1 = x̄2x3 + f̄2f3

f2 = x1f̄3 + x̄3f̄1

f3 = f1f̄2 + x̄2x̄3

This has cost of 12. This network is cyclic and it is not combinational. As was

discussed in class, an essential step in the synthesis process is the verify whether

a circuit is combinational.

A cyclic solution that is combinational is:

f1 = x̄3f̄2 + x̄2x3

f2 = x̄1x̄2x̄3 + x1f̄3

f3 = x̄1f1 + x̄2x̄3

This has cost 13. So, introducing cycles can help reduce the cost, and yet still

produce a valid solution.

Problem

Consider the functions:

f1 = abc̄ + b̄c

f2 = āb̄c

f3 = c̄(b̄ + ā) + āb̄

Design a combinational network, possibly cyclic, with minimal cost (where the

cost is measured as the literal count.) For full points, find a network with cost

10.

