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Robust Tunable In Vitro Transcriptional Oscillator Networks
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Abstract— Synthetic biology is facilitating novel methods and
components to build in vive and in vitro circuits to better under-
stand and re-engineer biological networks. Circadian oscillators
serve as molecular clocks that govern several important cellular
processes such as cell division and apoptosis. Hence, successful
demonstration of synthetic oscillators have become a primary
design target for many synthetic biology endeavors. Recently,
three synthetic transcriptional oscillators were demonstrated by
Kim and Winfree utilizing modular architecture of synthetic
gene analogues and a few enzymes. However, the periods
and amplitudes of synthetic oscillators were sensitive to initial
conditions and allowed limited tunability. In addition, it being
a closed system, the oscillations were observe to die out after a
certain period of time. To increase tunability and robustness of
synthetic biochemical oscillators in the face of disturbances and
modeling uncertainties, a control theoretic approach for real-
time adjustment of oscillator behaviors would be required. In
this paper, assuming an open system implementation is feasible,
we demonstrate how dynamic inversion techniques can be used
to synthesize the required controllers.

I. INTRODUCTION

An objective of synthetic biology is to build biological
circuits from scratch, much like the synthesis of VLSI
circuits using basic electronics components, and to interface
these circuits with in vivo biological circuits. An example
of such circuits is an oscillator. Biological oscillators serve
as a time-keeping mechanism and control several important
processes such as cell division and cell apoptosis. Since the
underlying processes are rarely well modeled, the method
used to synthesize the oscillations must be robust to modeling
uncertainties (due to imprecisely known kinetic rates, number
of molecules, etc.), thermal fluctuation, and intercellular
noise. In vitro synthetic biology approaches allow researchers
to directly access and manipulate biomolecular parts without
the overwhelming complexity and intertwined dependencies
within in vivo cellular circuits [1].

In [3], Elowitz and Leibler presented the first synthetic
biological oscillator. This oscillator is obtained by imple-
menting a network of three non-natural transcriptional re-
pressor systems in Escherichia coli. Synthesis of a green
flurorescent protein is the read out for the state of this
network in individual cells. Since the oscillations reported in
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Fig. 1. The two-switch negative feedback oscillator synthesized in [2].

The coupled oscillator system comprises two switches (Swz1 and Swi2), an
inhibitor block (IB), and an activator block (AB). The ON state of the switch
comprises DNA template T and an activator A bound together forming a
complete promoter for T7 RNAP except for a nick. The OFF state template T
contains an incomplete promoter for T7 RNAP. Each switch is realized using
activation, inhibition, and RNAP. AB and IB are realized using annihilation,
release, and RNaseH.

[3], with typical periods of hours, are slower than the cell-
division cycle, the state of the oscillator gets transmitted from
one generation to the next. A number of interesting synthetic
biological oscillators have been synthesized since then (see,
e.g., [4], [5], [6], [7], [8], [9], [10], [11], and references
therein). Recently, modular synthetic gene analogues were
used in [2] to synthesize three types of synthetic transcrip-
tional oscillators in vitro using bacteriophage T7 RNA poly-
merase (RNAP) and E. coli ribonuclease H (RNase H): (1)
a two-switch negative feedback oscillator, (2) an amplified
negative feedback oscillator, and (3) a three-switch ring
oscillator. These oscillators have since been used to drive
DNA tweezers (see [12]). None of these designs, however,
can produce sustained oscillations for an extended period
of time and the oscillations are sensitive to the underlying
parameters and initial conditions. Another relevant work is
a DNA-based oscillator synthesized in [11]. However, it is
not possible to pre-specify the robustness and the tunability
of the oscillators synthesized in [2] and [11]. Furthermore,
the oscillations are observed to die out within a few number
of cycles due to enzyme inactivation, NTP fuel exhaustion,
and buildup of wastes (see [2] and [11]). If the closed system
nature of these oscillators is relaxed so that chemicals can
be added and removed from the system then many of these
hurdles can be overcome.

In this paper, assuming an open system implementation,
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TABLE I
NOTATION FOR THE OSCILLATOR CIRCUIT

Symbol Meaning

T dsDNA template + incomplete promoter

T — A  activated DNA template

A-1T functionally inert activator-inhibitor complex
rA — I functionally inert activator-inhibitor complex
Ti2A5 ON-state Swqa

Ti2 OFF-state Swqo

To1 A ON-state Swa

T21 OFF-state SW21

(T3] Concentration of T;;

[T [Ti] + [TiA]

rl free-floating ssSRNA inhibitor

dI free-floating ssDNA inhibitor

rA free-floating ssRNA activator

A free-floating ssDNA activator

we show how controllers synthesized using the principle of
dynamic inversion (DI) (see [13]) can be used to resolve these
problems. In particular, we demonstrate how a set of state
variables of the network can be made to track an exogenous
signal. If the exogenous signal is chosen to be a sinusoid
or a pulse train, it follows that these state-variables will
exhibit an oscillatory time-series response. It turns out that
the DI controller is equivalent to a standard proportional +
integral (PI) controller with a bias term which depends on the
initial conditions. The DI controller ensures that the tracking
error is of the same order of magnitude as the inverse of
the proportional gain. Control theoretic synthesis of such
DI controllers is explained in detail in [14] in the context
of the repressilator network described in [3]. In this paper,
we use the same ideas to build a feedback controller for
the oscillator network described in [2], which is a more
complicated and more advanced system. The novelty of this
paper is not in the synthesis of DI controller but, rather, in
applying the well-known DI controller synthesis results to a
wet-lab implementation.

II. SYSTEM DESCRIPTION

The reason why we focus on the oscillator synthesized in
[2] (see Fig. 1) is that, in general, the DNA-based circuits
relying on predictable thermodynamics and kinetics of DNA
strand interactions impart a good deal of flexibility in synthe-
sizing synthetic biological constructs and in coupling these
circuits to in vivo processes. Here, a class of transcriptional
circuits is modularly wired into arbitrarily complex networks
by changing the regulatory and coding sequence domains of
DNA templates. The transcriptional circuits can be wired as
continuous-time analog neural networks with symmetric or
asymmetric weights [15], implying that they are a computa-
tionally and behaviorally complete circuit architecture [16].
Individual transcriptional switches exhibit sharp sigmoidal
inhibitory regulations so that the construction of two-switch
circuits exhibiting bistable dynamics is possible [17].

Our system of interest is the two-switch oscillator of [2]
shown in Fig. 1. It comprises two switches, denoted Swio
and Swa;, connected together in a negative feedback loop.
The two switches take RNA regulators as the exogenous
inputs and outputs. The switch response is governed by four
DNA and RNA hybridization reactions, viz., activation, an-
nihilation, inhibition, and release. The sharp thresholds from
these hybridization reactions can be used to create a variety
of analog or digital circuits [16]. The key hybridization
reactions and toehold-mediated strand displacement reactions
are summarized in Table II.

Specifically, each synthetic switch Sw;; is controlled by an
input signal, RNA species j, and produces an output signal,
RNA species 7. RNA activator rAl activates the production
of RNA inhibitor rI2 by modulating switch Sws;, whereas
RNA inhibitor rl2, in turn, inhibits the production of RNA
activator rAl by modulating switch Swis. The OFF-state
switch, T, consists of a double-stranded DNA template with
a single-stranded region containing an incomplete promoter
for T7 RNAP. When a single-stranded DNA activator strand
binds to the single-stranded region of template, the promoter
region is complete except for a nick — this allows efficient
transcription by RNAP, hence the switch turns into an ON-
state. The switch can be turned OFF again by the addition
of an inhibitor strand (either a single-stranded RNA ‘I’
or single-stranded DNA ‘dI’) which initiates binding at the
toehold domain of the activator strand and displaces the
activator from the ON-state switch T;;A;. Free-floating in-
hibitor strands can also bind to complementary free-floating
activator strands to form inert activator-inhibitor complexes.
After these free-floating inhibitor and activator strands have
bound together, there remains a certain amount of only
inhibitor or activator strands, depending on which had a
greater initial population. DNA activator strand A can be
released from the A-dI complexes when RNA activator strand
rA displaces dI from A-dI through toehold-mediated strand
displacement reaction. The released activator is available
to activate target switches. The catalytic production and
degradation reactions are mediated by two enzymes: RNAP
and RNase H. RNAP produces RNA signals from ON-state
switches that in turn regulate the state of target switches,
while RNase H degrades RNA signals within RNA-DNA
hybrid complexes undoing the regulatory action by RNA
signals.

III. ODE MODEL OF THE SYSTEM

Let us assume that the experimental set-up ensures the
following:

o The production rates of the two RNA signals are deter-
mined by ON-state switch concentrations;

e The degradation rates of the two RNA signals are
determined by their own concentrations;

o Fixed RNAP and RNase H concentrations with first-
order enzyme kinetics;

« Steady-state switch responses to RNA inputs (rA; and
rly) can be approximated by Hill functions;
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TABLE I
KEY CHEMICAL REACTIONS IN THE OSCILLATOR (SEE [2])

Activation \

Annihilation

\ RNAP |

Tor + A1 = Toi Ay
Tio + Ay = T12As

A1 + d[l — Aldjl
TAl —+ dIl — T'Aldll
A2 +rly — AQ’I’IQ

T21A1 — T21A1 +rly
To1 — 151 + 7"12
T12A2 — T12A2 + ’I’Al
T2 > Tia+ 14

] Inhibition \ Release \ RNaseH \
T21A1 + dll — T21 + Aldll Aldll + ’I‘Al — T’Aldfl + A1 ’I"Aldjl — dIl
T12A2 —+ T’IQ — T12 + AQT‘IQ AQT’IQ — A2
TABLE III
e Kj and K4 have been well approximated; and
; . . NOTATION
« Hill coefficients have been well approximated.
Then, the system can be represented (see [2]) using the Symbol Meaning
following ordinary differential equations (ODE’s): (RT) R Set of all (nonnegative) real numbers
dfrA;] R"™ Set of all n-dimensional real-valued
— = kp - [Th2Asz) — kq - [rA4], vectors
d[rI] R Set of all n x m real-valued matrices
e kp - [To1 A1) — kq - [r1s)]. Z Set of all integers
ct Class of continuously differentiable
Let Q(z,y,n) = ( —+%— |. Then, the response of the functions
] AL () or ()T Transpose of a vector or a matrix ()
switch to the RNA inputs is given by (see [2]): >
@y = [ s
d[Ty2As) 1, i
T = ; ([Tf;]Q(TIm Ky, TL) — [T12A2]) , <LE, 1/>z — /O yT(t)a:(t)dt
% _ l ({ngt] (1 - Q(rAy, Ka,m)) — [T21A1]) ) ||l = +/{(z,x) (Lo-norm, energy of x)
T

In the above equations, k, represents the first-order rate
constant based on RNAP, which produces RNA outputs,
while k; represents the first-order rate constant based on
RNase H, which results in the degradation of RNA signals.
Here, n and m are Hill exponents, 7 is a relaxation time for
the hybridization reactions, K 4 is the activation threshold
for the RNA activator rA;, K is the inhibition threshold
for the RNA inhibitor /3, and [T}7*] is the sum of concen-
trations of all molecular species containing 7;;. Reasonable
approximations for the thresholds are K ~ [A5"] — 1[T{S"]
and Ky =~ [dI{*'] — [Al°"] + L[T49Y], while reasonable
approximations for Hill exponents are n =~ 4% and
m /s 4@%. Hill exponents were measured experimentally
in [17].

Remark 1: The difficulties in achieving sustained oscilla-
tions in closed systems are briefly stated in Section 1 and

are described in detail in [2]. O

IV. DI CONTROLLER SYNTHESIS

We shall demonstrate that sustained oscillations of desired
amplitude and frequency can be induced in the oscillator net-
work shown in Fig. 1 by synthesizing a suitable tracking con-
troller. We shall synthesize the required tracking controller
using the well-known principle of dynamic inversion. Control
theoretic synthesis of such DI controllers is explained in

Lo Space of possibly vector valued signals x
for which the energy ||z| < oo

for which ||z||, < c0 V€ R

= [ |z()] dt

eIt

detail in [14] in the context of the repressilator network
described in [3].

A. Notation

The notation used is summarized in Table III. We mostly
follow the notation introduced in [18] and [19].

Definition 1: A function f : R™ +— R" is said to be
continuously (smoothly) differentiable if the derivative exists
and is continuous (smooth). O

Definition 2: A function f : R™ +— R™ is said to be
Lipschitz if there exists a constant L > 0 such that, for all

z1, 22 €R™, |[f(21) — f@2)|| < Lljz1 — 22 0
Definition 3: A system is said to be Lo stable if the energy
of its output is finite for every finite energy input. |

B. Background Results

Several results on synchronization of coupled oscillators
exist and can be found in [20], [21], [22], [23], and references
therein. Our tracking controller is based on the dynamic
inversion (DI) theory presented in [13]. Let us consider
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a specialized version of [13, Theorem 2] for a first order
system. Consider a system described by

J}(t) = f(‘r(t)’z(t)vu(t))v Z(t) = C(az(t),z(t),u(t)), (D

where z(0) = zp and z(0) = 2 for (x, z,u) € Dy xD,xD,
and where D,, D,, D, C R are domains containing the
origin. The functions f, ¢ : D, x D, x D, — R are
continuously differentiable with respect to their arguments,
and furthermore, assume that 0 f/Ju is bounded away from
zero in the compact set Q; ., C D, x D, x D, of
possible initial conditions, i.e., there exists by > 0 such that
|0f /Ou| > bo.

Let e(t) = x(t) — r(t) be the tracking error signal. Then,
the open loop error dynamics are given by

et) = fle(t) +r(t), 2(t), u(t)) — (1), e(0) = eo,
£(t) = Cle(®) +r(t), 2(t), u(t), 2(0)=z2. ()

We construct an approximate dynamic inversion con-
troller:

eu(t) = —sign (gi) f(t,x,z,u), 3)
where
ft,x,z,u) = fle(t)+r(t), z(t), u(t)) —r(t) —ame(t), (4)
where a,, > 0 gives the desired rate of convergence.

Let u(t) = h(t,e, z) be an isolated root of f(¢,e,z,u) =
0. The reduced system for the dynamics in (2) is given by

é(t) = —ame(t), e(0) = eo,
2(t) = Cle(t) + (1), 2(2), h(t, e(t), 2(1))), 2(0) = 2o.
The boundary layer system is

dv

oy
7, = ~sign <8> f(t,e,z,v+ h(t, e, z2)). (5)

-

We assume that three conditions hold for all [¢, e, z,u —
h(t,e, z), €] € [0,00) x D, , x D, x [0, €] for some domains
D, ., D, C R which contain the origin:

1) The functions f, ¢ are such that their partial derivatives
with respect to (e, z,u), and the partial derivative of f
with respect to ¢ are continuous and bounded on any
compact subset of D, , x D,. Further, h(t, e, z) and

a—(t, e, z) have bounded first derivatives with respect
u

0 0
to their arguments, and 8—f and a—f are Lipschitz in e
e z

and z uniformly in ¢.
2) The origin is an exponentially stable equilibrium of
£(t) = ¢(x, 2, h(t,0,2)).

3) The term |——|, is bounded away from zero.

ou

Theorem 1: ([13, Theorem 2])
Consider the boundary layer system (5). Suppose the above
three assumptions hold. Then the origin is an exponentially
stable equilibrium. Furthermore, let {2, be a compact subset
of R,, where R, C D, denotes the region of attraction of

the autonomous system.

;l—: = —sign <§£> £(0, eo, z0,v + R(0, €9, 20))-
Then for each compact subset €2, . C D, . there exist a
positive constant €, and 7' > 0 such that for all ¢ > 0,
(eo,Z()) S Qe’z , Ug — h(O,eo,zo) € Ny, and 0 < € < ¢,
, the system (1), (3) has a unique solution z(t) on [0, c0)
and z.(t) = r(t) + O(e) holds uniformly for t € [T, 00). O

Remark 2: a DI-based controller may require high gains
if small error margins are required. On such occasions, a
filtered controller may have to be used. A filtered controller
may potentially worsen the error margins, but can be de-
signed to ensure stability as well as robustness (see the
disturbance observer of [24]). O

Remark 3: 1If each subsystem in the given network can
be made to oscillate, the phase difference between the
oscillations need not be enforced directly. Instead, the in-
terconnection gains can be chosen to ensure a desired phase
difference [25]. O

C. DI Controller Synthesis for Our Oscillator Network

Control theoretic synthesis of such DI controllers is ex-
plained in detail in [14] in the context of the repressilator
network described in [3]. In this paper, we use the same
ideas to build a feedback controller for the oscillator network
described in [2], which is a more complicated and more
advanced system. Conceptually, our approach to synthesize
the DI controller is exactly the same as the approach of
[14] and we claim no originality on that count. Nevertheless,
for the sake of completeness, we now outline that synthesis
procedure. Our objective is to induce the desired oscillations
in [T51 A1) and [T12Az] using [A;] and [As], respectively, as
control inputs. Note that the dynamic equations for [T2As]
and [T A;] may not oscillate spontaneously even when
coupled with [rI5] and [rA;] depending on the experimental
parameters such as hybridization rates and initial DNA and
enzyme concentrations. Furthermore, we assume that the
[rA;1] and [rls] dynamics cannot be controlled actively.
Hence, the desired phase relationship between [T12A5] and
[T21A;1] needs to be enforced via reference signals sent
to the two systems. We propose a DI-based controller to
induce oscillations in each switch that track reference signals.
We develop a controller for one switch, and a similar
controller can be implemented for the other switch. To
overcome the limitations of closed systems and to allow real-
time fine tuning of control inputs, we will assume the use
of microchemostat as an experimental platform [26]. The
state of switch can be read out real-time by fluorescence
measurements [2], which can be compared with the reference
signal in the controller. Then, the required control inputs are
injected to the reaction chamber — A; for positive inputs
and its complement Aj for negative inputs. An analogous
control method was used in [17] to move system from a
bistable parameter regime to a monostable regime and back.

The controller is developed hereafter using the symbols
z, z and u for brevity of notation. The state x denotes
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[T21 Aq] or [T12As]. The variable z represents [rA;] or [rls],
respectively. The control input, u, denotes [A;] or [A5] as the
case may be. Each switch can be expressed as a linear time-
varying (LTV) system of the form:

#(t) = —a()x(t) + o(t) + g(z)u(t), (6)

where z represents external dynamics which are bounded
input bounded output (BIBO) stable with respect to x. Noise
and external disturbances are captured in the term o (¢) which
is assumed to be bounded with a bounded derivative.

Remark 4: Note that a(t) and g(z) are assumed known
in this case. However, the model is only approximately valid
so that a general control-theoretic approach applicable for
unknown dynamic functions is of much use in the required
controller synthesis. ]

The control objective is to design u(t) to ensure that x(t)
oscillates when both a(t) and g(z) are unknown. We assume
that g(z) > 0 Vz, i.e., the control effectiveness is positive,
and that g(z) is smoothly differentiable for z > 0 with
a bounded derivative. Let r(¢) denote the reference signal
which needs to be tracked by a given switch of the oscillator
network, where r(t) can be chosen as a sine wave with an
appropriate phase for each component. Then, we write the
error dynamics for e = x — 7:

é=—ame+ o+ g(z)u—anr—17+ (ay —a)x, (7)

where a,, > 0 ensures a desired convergence rate; in this
equation, we have not stated the dependence on ¢ explicitly.
If we could ensure that g(z)u(t) + o(t) — amr(t) — 7(t) +
(am — a(t))z(t) = 0, then z(¢) would be oscillatory. A DI-
based control law given by

u(t) = —k(g(2)u(t) = amr(t) =7 (t) + (am—a(t))z(t)) (8)

ensures tracking with an error bounded above by O(1/k).
However, note that a(t), o(t) and g(z) are all unknown.
The standard practice would be to design an adaptive law to
estimate them [24]. Instead, using Eq. (7), we can rewrite
the control law as

u(t) = —k(é(t) + ame(t)), )

u(t) = —kye(t) — ki /O e(t) (10)

where k, =k, i.e., the error bound is on the same order as
the inverse of the proportional gain. To avoid the wind-up,
we replace k; with the anti-windup O(k;, e), where

ki if le| < 6;
O(ki,e) = ki ife>0;
—Ei if e < —57

where 6 and k; are thresholds of choice.

V. SIMULATION RESULTS

The simulation results are shown in Fig. 2 for our oscil-
lator network which is a slight modification of the first of
the 3 designs in [2]. It comprises two dynamical systems,
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Fig. 2. Time histories of the states of the two switches. Here, [z1] denotes
the deviation from a baseline value in the concentration of 751 A1 and [z2]
denotes the deviation from a baseline value in the concentration of 175 Ao.
The performance objective was to induce tunable oscillations in these two
states with a phase difference of /4. The simulation plots show that the
performance objective is achieved satisfactorily.

each of which has to track an oscillatory trajectory. The
periodic signals sent to the two subsystems are chosen
to be identical, except for a phase difference. Moreover,
periodic disturbances are added to the two subsystems. The
z dynamics are driven by the state x of the other oscillator,
in a way similar to the Kim-Winfree model. As Fig. 2 shows,
the performance objective is achieved satisfactorily.

VI. DISCUSSION

Synthetic biology is growing as an expansion of traditional
biology discipline from natural organisms towards potential
organisms [27]. Hence, making biological systems engineer-
able is a goal of engineers in the field of synthetic biology.
Many technical and fundamental obstables remain before
the construction of synthetic biological systems can be-
come routine. Due to the modular nature and programmable
connectivity, DNA-based circuits operating in a simple in
vitro environment offers a promising testbed for engineering
biochemical systems. In this work, we focused on the two-
switch oscillator synthesized in [2] as the control objective.
In [2], Kim and Winfree explored the system for a wide range
of parameters that resulted in an oscillatory response. How-
ever, these oscillations damped out eventually due to the lim-
itations of closed system. One of the experimental difficulty
was the accumulation of short degradation products, which
induced slow-down of oscillation periods and damping of
oscillations. Detailed mechanistic modeling provided a more
complete explanation for the system behavior, but did not al-
low easy analytic exploration. In a subsequent work [12], the
two-switch oscillator was connected to various downstream
load processes, showing different extent of system sensitivity
depending on the amount of load processes and the mode
of coupling. In this work, a microchemostat platform ([26])
was assumed to overcome the limitation of closed systems
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and to allow real-time input of reference signals. This would
allow a more predictable system behavior with robust and
sustained oscillations — making the proposed simple ODE
model as a reasonable description of oscillator network. We
have shown that the DI-based controller approach ensures
tunable robust oscillations in the two-switch oscillator system
following reference signals with guaranteed bounds. This
controller approach would be particularly relevant when
the oscillator is coupled to load processes with unknown
dynamics. We believe our DI controller will be applicable to
the other oscillator networks in [2] as well as other DNA-
based synthetic circuits in vitro. Presently, we are working
on the experimental implementation of the controller using
chemical reaction networks. In addition, we are exploring the
use of sparse and possibly aperiodic signals as the exogenous
inputs to the system so as to build the desired oscillations.

VII. CONCLUSION

In biological networks, oscillators serve as molecular
clocks that govern several important cellular processes such
as cell division and global gene expression. Recent progress
in in vitro synthetic biology demonstrated the use of sim-
plified synthetic gene analogues to construct oscillators [2]
that can be used to orchestrated other molecular processes
in vitro [12]. However, partly due to the closed nature of
the implementation, the oscillators synthesized in [2] do not
exhibit sustained oscillations. In addition, their robustness to
disturbances and modeling uncertainties has also been left
uncharacterized. Assuming an open system implementation,
we demonstrate how the well-known dynamic inversion tech-
nique can be directly used to synthesize feedback controllers
that ensure sustained and synchronized oscillations. The
tunability is achieved by injecting a function of the desired
signal as the input to the system.
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