
EE 1301 UMN

Introduction to Computing Systems Spring 2013

⊕ ⊕

Quiz # 3

Dec. 5, 2013

1. Implementing XOR with AND gates

Recall that the Exclusive-OR (XOR) function is 1 if an odd number of the inputs are

1, and 0 otherwise. Suppose that we have to build an circuit that computes XOR

with AND gates, OR gates, and inverters.

(a) Draw a circuit to compute the XOR of 7 variables with the fewest possible number

of AND and OR gates gates, and as many inverters as you want.

(b) Draw a circuit to compute the XOR of 26 variables with the fewest possible

number of AND and OR gates gates, and as many inverters as you want.

(You can have XOR “boxes” in your drawings. You don’t have to show the contents

of each box, but show the contents of each box of a given size.)

EE 1301, Spring ’13 2

2. Batcher Sorting Network

A comparator is a device which sorts two numbers x and y, as shown in Figure 1.

Figure 1: a comparator.

The Batcher sorting network was presented in class. It is constructed with a block

called the Merge network. Given two sorted input sequences x0, x1, . . . , xn/2−1 and

x′0, x
′
1, . . . , x

′
n/2−1, the Merge[n] network produces a sorted output sequence y0, y1, . . . , yn−1.

The recursive construction of the Merge[8] network is shown in Figure 2. The re-

cursive construction of the Batcher[8] network, based on the Merge[8] network, is

shown in Figure 3. The Merge[2] and Batcher[2] networks both consist of a single

balancer.

0x

1

2x

3x

x

x

x

x

x0

1

2

3

y

y

y

y

3

2

1

0

y

y

y

y

7

6

5

4

Merge[4]

Merge[4]

inputs outputs

Figure 2: the Merge[8] network.

(a) What is the depth of the Merge[8] network?

(b) What is the depth of the Batcher[8] network?

(c) What is the depth of the Merge[64] network?

EE 1301, Spring ’13 3

(d) What is the depth of the Batcher[64] network?

(The depth of a network is the number of stages, i.e., the number of comparators that

one traverses from an input to an output.)

x

x

x

x0

1

2

3

y

y

y

y

3

2

1

0

y

y

y

y

7

6

5

4

outputs

Merge[8]

inputs

x

x

x

x4

5

6

7

Batcher[4]

Batcher[4]

Figure 3: the Batcher[8] network.

Figure 4: the Batcher[4] network.

EE 1301, Spring ’13 4

3. A Bit of Horticulture – Traversing Trees

Consider the following data structure:

struct node {

int x;

struct node *left;

struct node *right;

};

The tedious code to setup a tree is shown at the end. There is also a sketch of the

corresponding tree.

(a) What does the following function print out?

void dfs(struct node *p) {

if (p->left != NULL) {

dfs(p->left);

}

printf("%d ", p->x);

if (p->right != NULL) {

dfs(p->right);

}

}

int main(int argc , char **argv) {

struct node *p = setup_tree ();

dfs(p);

}

EE 1301, Spring ’13 5

(b) What does the following function print out?

void dfs1(struct node *p) {

printf("%d\n", p->x);

if (p->left != NULL) {

dfs2(p->right);

}

if (p->right != NULL) {

dfs2(p->left);

}

}

void dfs2(struct node *p) {

if (p->left != NULL) {

dfs1(p->left);

}

if (p->right != NULL) {

dfs1(p->right);

}

printf("%d\n", p->x);

}

int main(int argc , char **argv) {

struct node *p = setup_tree ();

dfs1(p);

}

EE 1301, Spring ’13 6

Here is the (tedious) code to create the tree.

struct node *setup_tree(void) {

// create tree

struct node *p= (struct node *) malloc(sizeof(struct node));

p->left= (struct node *) malloc(sizeof(struct node));

p->right= (struct node *) malloc(sizeof(struct node));

p->left ->left= (struct node *) malloc(sizeof(struct node));

p->left ->right= (struct node *) malloc(sizeof(struct node));

p->right ->left= (struct node *) malloc(sizeof(struct node));

p->right ->right= (struct node *) malloc(sizeof(struct node));

p->left ->right ->left= (struct node *) malloc(sizeof(struct node));

p->left ->right ->right= (struct node *) malloc(sizeof(struct node));

p->right ->right ->left= (struct node *) malloc(sizeof(struct node));

p->right ->right ->right= (struct node *) malloc(sizeof(struct node));

p->right ->right ->left ->left=(struct node *) malloc(sizeof(struct node));

p->x = 1;

p->left ->x = 2;

p->right ->x = 3;

p->left ->left ->x = 4;

p->left ->left ->left = NULL;

p->left ->left ->right = NULL;

p->left ->right ->x = 5;

p->right ->left ->x = 6;

p->right ->left ->left = NULL;

p->right ->left ->right = NULL;

p->right ->right ->x = 7;

p->left ->right ->left ->x = 8;

p->left ->right ->left ->left = NULL;

p->left ->right ->left ->right = NULL;

p->left ->right ->right ->x = 9;

p->left ->right ->right ->left = NULL;

p->left ->right ->right ->right = NULL;

p->right ->right ->left ->x = 10;

p->right ->right ->left ->right = NULL;

p->right ->right ->right ->x = 11;

p->right ->right ->right ->left = NULL;

p->right ->right ->right ->right = NULL;

p->right ->right ->left ->left ->x = 12;

p->right ->right ->left ->left ->left = NULL;

p->right ->right ->left ->left ->right = NULL;

return p;

}

EE 1301, Spring ’13 7

Figure 5: Tree

EE 1301, Spring ’13 8

4. Pointers

(a) What does the following program print out?

include <stdio.h>

int main(int argc , char **argv) {

int *p;

int *q;

int *r;

int x = 1;

int y = 2;

int z = 3;

p = &x;

q = &y;

r = &z;

*r = x;

x = *q;

y = *r;

printf("%d %d %d\n", x, y, z);

x = 4;

y = 5;

z = 6;

r = p;

p = q;

q = r;

*p = 7;

*q = 8;

*r = 9;

printf("%d %d %d\n", x, y, z);

}

EE 1301, Spring ’13 9

(b) What does the following program print out?

include <stdio.h>

int main(int argc , char **argv) {

int *p;

int **q;

int ***r;

int x = 1;

int y = 2;

p = &x;

q = &p;

r = &q;

*p = 3;

**q = *p;

***r = **q;

printf("%d %d %d %d %d\n", x, y, *p, **q, ***r);

int z[5] = {2, 3, 4, 5, 6};

z[z[z[0]]] = 7;

int i;

for (i = 0; i < 5; i++) {

printf("%d ", z[i]);

}

printf("\n");

}

EE 1301, Spring ’13 10

5. Error Correcting Codes

Suppose that Alice wants to send Bob 4 bits of information at a time, x0, x1, x2, x3,

over a noisy Wi-fi connection that occasionally flips bits. She decides to encode her in-

formation by adding three extra bits x5, x6, x7 computed as follows (here + represents

exclusive OR):

x4 = x1 + x2 + x3

x5 = x0 + x2 + x3

x6 = x0 + x1 + x3

She sends the 7 bits x0, x1, x2, x3, x4, x5, x6, x7 to Bob.

Consider the following matrix, called a parity check matrix:

H =

 0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1

 .

The vector of the seven 7 bits that Alice sends, X = [x0, x1, x2, x3, x4, x5, x6, x7],

satisfies

HXT =

 0

0

0


Problems

(a) Suppose that Alice wants to send the bits 1, 1, 1, 1. What seven bits will she

transmit?

(b) Suppose that Bob receives the seven bits 1, 0, 0, 1, 0, 0, 1. Which bit was flipped?

What will he conclude were Alice’s original four bits?

