
A Survey of Computation-Driven Data Encoding
Weikang Qian�#, Runsheng Wang†#, Yuan Wang†, Marc Riedel‡∗, Ru Huang†∗

�UM-SJTU Joint Inst. and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong Univ., China
†Inst. of Microelectronics and MoE Key Lab of Microelectronics Devices and Circuits, Peking Univ., China

‡Dept. of Electrical and Computer Engineering, Univ. of Minnesota, U.S.A.
Email: �qianwk@sjtu.edu.cn, †{r.wang, wangyuan, ruhuang}@pku.edu.cn, ‡mriedel@umn.edu

#first authors; ∗corresponding authors

Abstract—Although the metal-oxide-semiconductor field-effect
transistor (MOSFET) has been the dominant device for modern
very-large scale integration (VLSI) circuits for more than six
decades, with the dawning of a post-Moore era, researchers
are trying to find replacements. A foundation of modern digital
computing is the encoding of digital values through a binary
radix representation. However, as we enter into the post-Moore
era, the challenges of increasing power density, signal noise,
and device unreliability raise the question of whether this basic
way of encoding data is still the best choice, particularly with
novel electronic devices. Prior work has shown that binary
radix encoding has some disadvantages. We argue that it is
crucial to rethink the necessity of using this representation
in the post-Moore era. In this paper, we review some recent
development on computation-driven data encoding. We begin
with stochastic encoding, a representation proposed a long time
ago, discussing both its advantages and disadvantages. Then, we
review several recent breakthroughs with variations of stochastic
encoding that mitigate many of its disadvantages. Finally, we
conclude the paper by extrapolating future directions for effective
computation-driven data encoding.

Index Terms—stochastic computing, stochastic encoding, de-
terministic unary encoding, low discrepancy stochastic encoding

I. INTRODUCTION

Since the demonstration of the first MOSFET in 1947, it
has been the fundamental building block of modern VLSI
chips. The scale of the transistor has been shrinking in a
trend known as Moore’s law for more than 50 years. In recent
years, the power density of chips has increased to the point
where further scaling is very challenging and might become a
physical impossibility. For a post-Moore era, researchers are
actively seeking replacements for MOSFETs. Many new de-
vices have been proposed, such as carbon nanotube field-effect
transistors (CNFETs) [1], negative capacitance transistors [2],
memristors [3], etc.

Through the history of the semiconductor industry, a rigid
foundation has been the way data is encoded for computation.
Since the first successful release of microprocessor by Intel
in 1971, binary radix encoding has dominated the design of
arithmetic circuits. Binary radix is a type of deterministic,
positional encoding. As shown in Fig. 1, different bit positions
have different weights. Its key advantage is the encoding
efficiency: with n bits, we can encode all integers in the range
[0, 2n−1]. All students of computer engineering learn how to
build basic arithmetic circuits, such as adders and multipliers,
based on this encoding. The arithmetic-logic units (ALUs) of
all modern computing systems are predicated on it.

(1 0 0 1)2

Weights: 23 22 21 20

9

Figure 1: An example of binary radix encoding.

However, as we enter into the post-Moore era, the chal-
lenges of the increasing power density, signal noise, and device
unreliability raise the question of whether this encoding is still
the best choice. Prior research has shown that binary radix has
some significant drawbacks [4]. One is that most arithmetic
circuits require a large area. Multiplication is an example.
When we design a binary multiplier, we need to multiply
each bit of the multiplier with the multiplicand and then add
all the partial products together. This results in a large area
overhead, stemming from the weighted nature of the encoding.
Although the partial products obtained from the bit-wise AND
are encoded in binary radix form, they need to be further
added together to produce the final result. This step could
be viewed as “re-encoding” the result into the binary radix
form. It accounts for most of the hardware cost of a binary
multiplier. Another drawback is the weak error tolerance. With
binary radix encoding, the most significant bit has the largest
weight. If, due to a noisy environment or an unreliable device,
this bit gets flipped, this will result in a large error in the
encoded value.

To mitigate the above issues, we argue that it is crucial
to rethink the necessity of using a binary radix encoding to
represent data. In recent years, there has been growing interest
in revisiting previously proposed alternative data encoding
methods and proposing new ones for arithmetic computa-
tion. In this article, we review some recent developments
and extrapolate from them. A particular encoding that was
proposed a long time ago that has seen a resurgence of interest
recently is stochastic encoding. We first give an overview
of stochastic encoding in Section II. With several drawbacks
of stochastic encoding recognized, variations of it have been
proposed recently. We review these in Section III. Finally,
in Section IV, we conclude the paper by discussing possible
future directions for developing truly effective computation-
driven data encoding.

II. STOCHASTIC ENCODING

An encoding method that has found renewed interest re-
cently is stochastic encoding [4]–[6]. It was first proposed

in the 1960s [7], [8]. Like binary radix, 0s and 1s are used
to represent data. However, the positions of 0s and 1s are
random and the data is encoded through the ratio of 1s to the
total number of bits in the sequence. As shown in Fig. 2(a), a
random sequence with three 1s out of eight bits encodes the
value 3/8. This type of encoding can only represent values
in the range [0, 1]. It is known as unipolar format encoding.
Another form is bipolar format encoding, in which the ratio
p of 1s to the total number of bits encodes the value (2p−1).
Thus, the range of the representation is [−1, 1]. Stochastic
bit sequences can either be generated serially in time as a bit
streams (see Fig. 2(a)) or parallel in space as a bit bundles (see
Fig. 2(b)) [9]. In what follows, we mainly focus on the serial
streaming form and refer to these as stochastic bit streams.
Unless otherwise specified, we use the unipolar format.

(a) (b)

x = 3/8

x = 3/8

0, 1, 0, 1, 0, 0, 1, 0

0

1
0
1
0
0
1
0

Figure 2: Stochastic encoding: (a) A stochastic bit stream; (b) A
stochastic bit bundle.

A. Advantages of Stochastic Encoding

Stochastic encoding has the following advantages.
1) Enabling the design of simple circuits to realizes complex

arithmetic functions. A widely-used example is multipli-
cation in the unipolar format, implemented by a single
AND gate, as shown in Fig. 3. Assuming that the two
input stochastic bit streams are independent, it is easy to
see that the probability of obtaining a 1 at the output of
the AND gate equals the product of the probabilities of
obtaining 1s at the two inputs of the gate. The hardware
cost is far less than that of the binary multiplier. In
the bipolar format, multiplication is implemented with
a single XNOR gate.

AND

A

B

1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0

1,1,0,0,0,0,1,0

b: 4/8

C

a: 6/8
c: 3/8

Figure 3: An AND gate realizes multiplication for stochastic encod-
ing.

2) Strong fault tolerance. By its encoding nature, every bit in
the sequence contributes the same weight to the encoded
value. Given a sequence of length N , the weight is 1/N .
Thus, if a bit flip occurs, the change to the final encoded
value is small and independent of the location of the bit
flip. This is in contrast to binary radix encoding, in which

bits at a higher positions have larger weights, so a flip in
these causes a larger error.

3) Tunable precision without hardware change. In the form
of serial streaming, the same hardware can be used
for any data precision the user requires. To increase or
decrease the precision, only the stream length needs to
be increased or decreased without changing the circuit.
In contrast, for binary radix-based design, when the data
precision is changed, the circuit must be redesigned.

4) Progressive precision. This property means that the first
few bits of a stochastic bit stream can yield a rough
approximation of the final number [10]. For example, the
bit stream 0110111001011001 encodes the value 9/16.
The first 2, 4, and 8 bits correspond to the bit streams
01, 0110, and 01101110, respectively. They encode the
values 1/2, 1/2, and 5/8, respectively, which are good
approximation of the actual value 9/16. This property
can sometimes be exploited to use a short bit stream to
represent the final value.

B. Disadvantages of Stochastic Encoding
While the advantages are compelling, stochastic encoding

has several distinct disadvantages.
1) The low encoding efficiency. For stochastic encoding to

represent any integer in the range [0, 2n − 1], it requires
the sequence length to be 2n−1. This is in contrast to the
binary radix encoding, which only requires n bits. With
serial bit streams, the computation time is proportional to
the stream length; this results in long computation time.

2) Stochastic variation. A stochastic bit stream is usually
generated with a module called stochastic number gen-
erator (SNG). A typical SNG design is shown in Fig. 4.
Each bit in the stream is the comparison result between
a k-bit uniformly distributed random number R and a k-
bit constant C. The bit is 1 if R < C and 0 otherwise.
It is easy to see that each bit in the stream has the
probability of C/2k to be a 1. To produce a bit stream for
a value p ∈ [0, 1], we just choose the constant C = 2kp.
Based on this mechanism, we can see that a stochastic
bit stream only ensures that each bit in the stream has the
probability of p to be a 1. However, for any generated bit
stream of length N , it likely will not have exactly pN 1s.
Randomness is an inherent error source with stochastic
encoding.

k

0,1,0,...

C/2
k

k

R

C

<

Uniform random

number source

Figure 4: Stochastic number generator.

3) Precision loss when doing addition. A basic stochastic
encoding can only represent values in the range of [0, 1]
in the unipolar format or [−1, 1] in the bipolar format.
This causes a problem when implementing addition. That
is, addition c = a + b cannot be exactly realized. This

is because given a and b within the valid representation
range of stochastic encoding, it is possible that their
sum is outside the range and hence, there is no way
to calculate that sum. Thus, with stochastic encoding,
addition is typically implemented in a scaled version
by using a multiplexer (MUX) as shown in Fig. 5. We
typically choose the selecting signal so that it has a
probability of 1/2 to be a 1. In this case, the output
of the MUX is the scaled sum c = 1

2 (a + b). Due to
the scaling, the addition with stochastic encoding entails
precision loss. The precision of the input is 1/N , where
N is the bit stream length. However, the precision of the
output is 2/N since we need to multiply the final result
by 2 to obtain a+ b.

A

B

1,1,0,0,0,1,1,1

0,0,0,0,1,0,0,0

1,1,0,0,0,0,1,0

b: 1/8

C

a: 5/8

c: 3/8

1

MUX

0

1,1,0,0,1,0,1,0

s: 1/2

S

Figure 5: A multiplexer realizes a scaled addition for stochastic
encoding.

III. VARIATIONS OF STOCHASTIC ENCODING

In this section, we review several recently proposed vari-
ations of stochastic encoding. These address some of the
disadvantages discussed in the previous section.

A. Deterministic Unary Encoding

As we mentioned in Section II-B, one disadvantage of
stochastic encoding is that it suffers from error caused by
stochastic variation. To overcome this drawback, a determin-
istic unary encoding was proposed [11]. An example is shown
in Fig. 6(a). Such an encoding is same as stochastic encoding
in that every bit has the same weight contribution to the final
value, which equals 1/N , where N is the length of the bit
stream. However, the key difference lies in the determinism
in generating the bit streams. If we want to encode a value
p ∈ [0, 1] with a stream of length N , as shown in Fig. 6(a),
the stream is composed of pN 1s followed by (1 − p)N 0s.
In this case, the ratio of 1s exactly equals the target value to
be encoded. Such a special stream could be easily generated
by replacing the uniform random number source in Fig. 4 by
a digital counter.

Since the deterministic unary encoding is same as stochastic
encoding in that each bit has the same weight contribution, it
is possible to use the same computing circuit as stochastic
encoding, e.g., using an AND gate for multiplication. How-
ever, directly using two deterministic bit streams may not
produce the correct result. An example is shown in Fig. 6(b).
In this example, the output is 2/4, which does not equal

the product of the two input values. In order to ensure the
correct computation, the inputs should maintain the property
that every bit of one stream should be paired with every bit
of the other exactly once. This essentially requires the repeat
of the bits in each stream in some way. An example is shown
in Fig. 6(c): each ai (0 ≤ i ≤ 3) is paired with each bj
(0 ≤ j ≤ 3) exactly once. To generate these streams, three
methods are proposed in [11], which are using relatively prime
bit length, rotation, and clock division (hereafter referred to as
deterministic manipulation methods). The streams in Fig. 6(c)
are produced using the clock division method, which divides
the frequency of the bit stream a by 4 to obtain the frequency
of the bit stream b. Using a pair of streams of the form shown
in Fig. 6(c), an AND gate can correctly realize multiplication,
as shown in Fig. 6(d).

(a) (b)

AND

A
B

1,1,1,0

1,1,0,0

1,1,0,0

b: 2/4

C

a: 3/4 c: 2/4

1,1,1,1,1,0,0,0

5/8

AND

A
B

1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0

1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0

1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0

b: 2/4

C

a: 3/4 c: 6/16

(d)

a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3 a0 a1 a2 a3

b0 b0 b0 b0 b1 b1 b1 b1 b2 b2 b2 b2 b3 b3 b3 b3

(c)

Figure 6: Deterministic unary encoding: (a) basic encoding form,
which has all 1s appear before all 0s; (b) an improper use of
deterministic unary encoding causing a wrong multiplication result;
(c) bit streams generated by the clock division method so that every
bit in one stream is paired with every bit of the other exactly once; (d)
deterministic unary encoding for correct multiplication by the clock
division method.

Recent work has further developed the concept of determin-
istic unary encoding. Najafi et al. proposed using analog pulse
width modulated (PWM) signals [12]. The value encoded by
the deterministic unary encoding is the fraction of the time the
signal is high. Thus, PWM signals encode value through their
duty cycles. In order to use these PWM signals to perform
correct computation, the key is to choose the correct clock
cycles (or frequencies) of the input PWM signals. For example,
it is obvious that for multiplication, if the frequencies of
the two input signals are the same, an AND gate will not
correctly implement multiplication. The authors described a
few guidelines for the choice of the clock cycles. One basic
guideline is that the clock cycles should be relatively prime,
or inharmonic using signal processing terminology. Another
important guideline is that, to achieve the best accuracy, the
operation should be run for the common multiple of the
input periods. With the use of analog signal, one clock cycle

corresponds to many clock cycles in the deterministic unary
encoding and hence, the computation time, together with the
energy consumption, is significantly reduced.

Najafi and Lilja noted that the deterministic unary encod-
ing does not possess the progressive precision property of
stochastic encoding. To address this problem, they proposed to
combine pseudo-randomized sequence with the deterministic
manipulation methods [13].

Recent works considered deterministic unary encoding rep-
resented as parallel bundles, a form called thermometer cod-
ing [14]. Mohajer et al. proposed a design method that
performs proper routing to implement monotonically increas-
ing functions with thermometer coding [14]. Non-monotonic
functions can be implemented with additional XOR gates.
They showed that the proposed design has a much smaller
area-delay-product than the conventional binary design and
stochastic design. Zhang et al. exploited the regular pattern
of thermometer coding and proposed an efficient generator
for it, which can significantly reduce the energy consumption
compared to the traditional bit stream generators [15].

B. Low Discrepancy Stochastic Encoding

Although stochastic encoding has the progressive precision
property, when the bit stream is short, the difference between
the value encoded by the bit stream and the accurate value
could still be very large. This is due to the large random
fluctuation of the pure random sequence. To improve the
progressive precision, low-discrepancy (LD) bit streams, in
which the 0s and 1s are more uniformly spaced, were intro-
duced to replace the conventional stochastic bit streams [16].
The LD bit streams can be generated by comparing each
number in an LD sequence to a fixed constant value. For
example, the upper part of Fig. 7(a) shows a type of LD
sequence called Sobol sequence. It has the property that for
any 0 ≤ m ≤ n, the first 2m numbers include all values in the
set {0, 1 · 2n−m, 2 · 2n−m, . . . , (2m − 1) · 2n−m}, where n is
the number of bits in the binary encoding of the values [17].
If the target value is 1/2, then we compare each number in
the sequence with the constant 1

2 · 2
n = 4. The resulting bit

stream is shown in the lower part of Fig. 7(a). As we can
see, the first 2, 4, and 8 bits all encode the correct value 1/2.
For comparison, the upper part of Fig. 7(b) shows a pseudo-
random sequence generated by a linear-feedback shift register.
In order to generate the same target value 1/2, each number in
the sequence is also compared with the value 4. The resulting
bit stream is shown in the lower part of Fig. 7(b). Now, the first
2, 4, and 8 bits encode the values 1, 3/4, and 1/2, respectively.
Obviously, its progressive procession property is far worse
than the LD bit stream.

There are many different types of LD sequences, originally
developed for quasi-Monte Carlo (QMC) sampling [18]. A
few of them have been applied to generate LD bit streams
for stochastic encodings. An LD bit stream generator based
on Halton LD sequence was proposed in [16]. However, it
has a large area overhead. A later work proposed to use
Sobol sequence generator [19], which is more area- and
power-efficient. The work [17] further proposed to combine
the deterministic manipulation methods with Sobol LD bit

streams. One particular design considered is to combine the
rotation method with the Sobol sequence generator. Given
this combination, the resulting design enjoys two benefits:
1) like deterministic encoding, the computation is accurate
when the bit stream length equals the product of the input
bit stream lengths; 2) the proposed sequence converges to
the accurate result much faster than the previous methods,
including the method integrating the rotation method with
the pseudo-random sequence [13]. Consequently, for a fixed
accuracy requirement, the proposed method requires a much
shorter bit stream length, which leads to the reduction in
energy consumption.

0,4,6,2,5,1,3,7

(a) (b)

1,0,0,1,0,1,1,0

0,3,7,1,2,6,4,5

1,1,0,1,1,0,0,0

< 4 < 4

Figure 7: Comparison between low-discrepancy sequence and ran-
dom sequence. (a) Sobol low-discrepancy sequence and the generated
bit stream; (b) A pseudo-random sequence and the generated bit
stream.

In [20], another way to efficiently generate LD bit streams
was proposed. The idea is to partition the entire bit stream
into multiple groups and evenly distribute the 1s among the
groups. It combines an even-distribution (ED) encoder with
an inter-group randomizer and an intra-group randomizer. The
ED encoder makes 1s evenly distributed within all groups, the
inter-group randomizer shuffles the order of the groups, and
the intra-group randomizer scrambles the bits within a group.

C. Sign-Magnitude Stochastic Encoding
With the unipolar format, stochastic encoding can only

represent values in the range [0, 1]. Thus, it cannot represent
negative values. To solve this problem, the bipolar encoding
format was proposed. With this, the representation range
becomes [−1, 1]. However, with bipolar format, the precision
reduces to half of that of the unipolar format: A stochastic
bit stream of length N can only represent values of precision
2/N in bipolar format.

Zhakatayev et al. recently proposed a variation of stochastic
encoding called sign-magnitude stochastic encoding [21]. It
encodes a signed value with a sequence of N bits. The first
bit is the sign bit, which represents a positive (resp. negative)
value when it is 0 (resp. 1), and the rest (N − 1) bits encode
the magnitude just like stochastic encoding. For example, the
bit stream shown in Fig. 8 encodes the value −3/4. The
multiplication on the new encoding applies an XOR gate to
the sign bits of the two input sequences to produce the sign
bit of the output sequence. It applies AND gates to handle the
rest bits in the two input sequences to produce the magnitude
part of the output sequence. This encoding method allows
the representation of negative values with almost the same
precision as the unipolar-format stochastic encoding.

D. Stochastic Encoding with Infinite Range
As we mentioned in Section II-B, one drawback of stochas-

tic encoding is the precision loss when doing addition. The

1,1,0,1,1

 3/4

Sign bit

Figure 8: An example of sign-magnitude stochastic encoding.

essential reason is because the encoding only allows us to
represent values in a limited range. This issue was considered
during the early days of stochastic computing and several
variations of stochastic encoding that could represent values
with infinite range were proposed. One representation is the
single-line unipolar stochastic encoding with infinite range. In
this representation, a random sequence with the ratio of 1s as p
and the ratio of 0s as (1−p) encodes the value p/(1−p). Thus,
any value in the range [0,+∞] could be encoded. Under this
encoding, normal addition, multiplication, and division could
be implemented by circuits based on JK flip-flops [8]. The
same representation was rediscovered later by Min et al. [22].

Another possible representation is a two-line stochastic
encoding [8]. Each line represents a value in the bipolar format
and the final encoded value is the ratio between X and Y ,
where X and Y are the bipolar numbers encoded by the upper
and lower lines, respectively. An example of such a encoding is
shown in Fig. 9(a). It can be seen that the range of the values
that could be encoded now becomes [−∞,+∞]. The same
representation was rediscovered later by Canals et al. [23],
under the name extended stochastic logic. Under this encoding,
normal addition could be implemented with the circuit shown
in Fig. 9(b). Indeed, the value of the output is

t

u
=

1
2 (ps+ qr)

1
2qs

=
p

q
+

r

s
,

which is the sum of the two inputs. Also, multiplication and
division could be implemented easily, as shown in Figs. 9(c)
and (d), respectively. Each of them only uses two XNOR gates.

1,1,0,1,0,1,1,1

x: 1/2 (bipolar)

1,1,0,0,0,0,1,0

y: 1/4 (bipolar)

x/y: 2

XNOR

XNOR

p

q

r
s u = qs

XNOR

XNOR

p

q

r
s

1

MUX

0

XNOR

0.5 (unipolar)

0.5 (bipolar)

q
s

t = ½ (ps+qr)

u = ½ qs

t = pr

XNOR

XNOR

p

q

r
s u = qr

t = ps

(a) (b)

(c) (d)

Figure 9: A two-line stochastic encoding. (a) an illustration of the
encoding; (b) the addition circuit; (c) the multiplication circuit; (d)
the division circuit.

E. Integral Stochastic Encoding

As we mentioned in Section II-B, one fundamental draw-
back of stochastic encoding is its low encoding efficiency and
hence, the long runtime. Besides this, addition with stochastic
encoding results in precision loss. Ardakani et al. proposed
an integral stochastic encoding to address these two problems
jointly [24]. It can be viewed as a mix of binary radix encoding
and stochastic encoding. An example is shown in Fig. 10(a).
One still uses a sequence of random numbers to encode a
value. However, the difference is that each number in the
sequence is not a binary 0-1 value, but an integral value in
the range [0,m]. The encoding essentially uses multiple wires
to represent the integral value through binary radix encoding.
With this, the encoding efficiency is improved. For example,
with m = 3, a sequence of length 5 is enough to represent
any value in the range [0, 15]. In contrast, using stochastic
encoding, the length should be 15, which is much longer.
Another benefit of this encoding is that the range of the values
that can be encoded is not limited. Thus, we could implement
exact addition. The addition of the two values represented
by the integral stochastic form can be realized by a binary
radix adder that performs number-wise addition, as shown in
Fig. 10(b). Multiplication requires a binary multiplier, which
seems to nullify the benefit of reduced hardware cost brought
by the stochastic encoding. However, if one input sequence
to the multiplier can be fixed as the binary stochastic bit
stream, then the multiplication could still be implemented
quite efficiently with several AND gates.

3,2,3,0,1

9

3,2,3,0,1

1,1,2,0,3

+
4,3,5,0,4

7

9
16

(a) (b)

Figure 10: Integral stochastic encoding. (a) an illustration of the
encoding; (b) the addition circuit.

Although the hardware cost of integral stochastic encoding
is larger than that of the basic stochastic encoding, the latency
is significantly reduced. As a result, the total energy consump-
tion is smaller than that of the basic stochastic encoding [24].

IV. CONCLUSION

In this paper, we reviewed some recent advances in
computation-driven data encoding. Binary radix encoding has
dominated traditional arithmetic circuit design since the early
days of the semiconductor industry. However, in the post-
Moore era, some disadvantages of this encoding are manifest,
especially its weak fault tolerance. Stochastic encoding has
been the subject of much research for post-Moore computing.
Stochastic encoding and binary radix encoding can be viewed
as two extremes of the encoding spectrum. On the one
end, binary radix encoding is positional, deterministic, and
compact. On the other end, stochastic encoding is uniformly-
weighted, random, and not compact.

Stochastic encoding permits complex operations to be per-
formed with very simple logic. While this is compelling
for many applications, there are significant disadvantages.
Recent research has proposed variations on the encoding that
mitigate many of these disadvantages. A trend seems to be
to hybrid encodings, with some positional aspects and some
stochastic aspects. For example, deterministic unary encoding
combines the uniform weight property of stochastic encoding
with the deterministic property of binary radix encoding.
Integral stochastic encoding extends the stochastic encoding by
replacing each bit in the sequence with a binary-radix encoded
integral value.

Despite these recent advances, new computation-driven data
encoding methods are still in an early exploration stage. We
believe that in the post-Moore era, research on these topics
has considerable merit. It may provide alternative solutions
to the challenges facing the semiconductor industry, enabling
innovations at the device and architecture levels. From the
research work surveyed in this article, we can frame questions
about future directions:

1) The representation range. Should negative values be
considered? Should the encoding only represent value
within a limited ranged? The bipolar-format stochastic
encoding and the sign-magnitude stochastic encoding
both try to extend the representation range by including
negative values. The two-line stochastic encoding with
infinite range further enlarges the representation range to
[−∞,+∞].

2) The hardware cost of designing arithmetic circuit. The
encoding essentially needs to support efficient hardware
design. Ideally, the hardware should has small area,
computation time, power consumption, and energy con-
sumption. Stochastic encoding delivers small area and
power consumption. However, due to the low encoding
efficiency, its needs a long computation time and hence
results in high energy consumption. To overcome these
issues, low-discrepancy bit streams are proposed to accel-
erate the convergence speed. Integral stochastic encoding
is proposed to shorten the bit stream length at the cost of
a slightly increased area.

3) Error tolerance. In the post-Moore era, error tolerance is
becoming crucial. On the one hand, for Internet-of-Things
applications, the supply voltage may be significantly re-
duced to minimize power consumption, which at the same
time significantly affects signal integrity. On the other
hand, some emerging devices are inherently unreliable
due to their manufacturing processes. Therefore, in the
post-Moore era, computation is more and more subject
to error. Thus, error tolerance is an important factor
that needs to be considered when developing new data
encodings.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China (NSFC) under grant no. 61472243 and
61204042.

REFERENCES

[1] R. Martel, T. Schmidt et al., “Single- and multi-wall carbon nanotube
field-effect transistors,” Applied Physics Letters, vol. 73, no. 17, pp.
2447–2449, 1998.

[2] J. C. Wong and S. Salahuddin, “Negative capacitance transistors,”
Proceedings of the IEEE, vol. 107, no. 1, pp. 49–62, 2019.

[3] D. Strukov, G. Snider et al., “The missing memristor found,” Nature,
vol. 453, pp. 80–83, 2008.

[4] W. Qian, X. Li et al., “An architecture for fault-tolerant computation
with stochastic logic,” IEEE Transactions on Computers, vol. 60, no. 1,
pp. 93–105, 2011.

[5] W. Qian and M. Riedel, “The synthesis of robust polynomial arithmetic
with stochastic logic,” in Design Automation Conference, 2008, pp. 648–
653.

[6] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (in press), 2017.

[7] W. J. Poppelbaum, A. Dollas, J. B. Glickman, and C. Otoole, “Statistical
processors,” in Advances in Computers, M. C. Yovits, Ed., 1976, vol. 17,
pp. 187–230.

[8] B. R. Gaines, “Stochastic computing systems,” in Advances in informa-
tion systems science. Springer, 1969, pp. 37–172.

[9] L. Miao and C. Chakrabarti, “A parallel stochastic computing system
with improved accuracy,” in International Workshop on Signal Process-
ing Systems, 2013, pp. 195–200.

[10] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-
time image-processing applications,” in Design Automation Conference,
2013, pp. 136:1–136:6.

[11] D. Jenson and M. Riedel, “A deterministic approach to stochastic
computation,” in International Conference on Computer-Aided Design,
2016, pp. 102:1–102:8.

[12] M. H. Najafi, S. Jamali-Zavareh et al., “Time-encoded values for highly
efficient stochastic circuits,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 25, no. 5, pp. 1644–1657, 2017.

[13] M. H. Najafi and D. Lilja, “High quality down-sampling for determinis-
tic approaches to stochastic computing,” to appear in IEEE Transactions
on Emerging Topics in Computing, 2017.

[14] S. Mohajer, Z. Wang, and K. Bazargan, “Routing magic: Performing
computations using routing networks and voting logic on unary encoded
data,” in International Symposium on Field-Programmable Gate Arrays,
2018, pp. 77–86.

[15] Y. Zhang, R. Wang et al., “A parallel bitstream generator for stochastic
computing,” in Silicon Nanoelectronics Workshop, 2019, pp. 1–2.

[16] A. Alaghi and J. P. Hayes, “Fast and accurate computation using
stochastic circuits,” in Design, Automation, and Test in Europe, 2014,
pp. 76:1–76:4.

[17] M. H. Najafi, D. Lilja, and M. Riedel, “Deterministic methods for
stochastic computing using low-discrepancy sequences,” in International
Conference on Computer-Aided Design, 2018, pp. 51:1–51:8.

[18] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods. Society for Industrial and Applied Mathematics, 1992.

[19] S. Liu and J. Han, “Energy efficient stochastic computing with Sobol
sequences,” in Design, Automation, and Test in Europe, 2017, pp. 650–
653.

[20] K. Kim, J. Lee, and K. Choi, “An energy-efficient random number
generator for stochastic circuits,” in Asia and South Pacific Design
Automation Conference, 2016, pp. 256–261.

[21] A. Zhakatayev, S. Lee et al., “Sign-magnitude SC: Getting 10x accuracy
for free in stochastic computing for deep neural networks,” in Design
Automation Conference, 2018, pp. 158:1–158:6.

[22] S.-J. Min, E.-W. Lee, and S.-I. Chae, “A study on the stochastic com-
putation using the ratio of one pulses and zero pulses,” in International
Symposium on Circuits and Systems, vol. 6, 1994, pp. 471–474.

[23] V. Canals, A. Morro et al., “A new stochastic computing methodology
for efficient neural network implementation,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 27, no. 3, pp. 551–564,
2016.

[24] A. Ardakani, F. Leduc-Primeau et al., “VLSI implementation of deep
neural network using integral stochastic computing,” IEEE Transactions
on Very Large Scale Integration Systems, vol. 25, no. 10, pp. 2688–2699,
2017.

