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Abstract—This paper presents a methodology for implement-
ing digital logic with molecular reactions based on a bistable
mechanism for representing bits. The value of a bit is not deter-
mined by the concentration of a single molecular type; rather, it is
the comparison of the concentrations of two complementary types
that determines if the bit is “0” or “1”. This mechanism is robust:
any small perturbation or leakage in the concentrations quickly
gets cleared out and the signal value is not affected. Based on this
bistable bit representation, a constituent set of logical components
are implemented. These include combinational components –
AND, OR, and XOR – as well as sequential components – D
latches and D flip-flops. Using these components, two full-fledged
design examples are given: a binary counter and a linear feedback
shift register. All the constructs consist of sets of coupled chemical
reactions with only coarsely specified rate categories (“fast”
and “slow”). Given such categories, the computation is robust
regardless of the specific reaction rates. The designs are validated
through simulations of the chemical kinetics. The simulations
show that the constructs produce nearly perfect digital signal
values.

I. INTRODUCTION

Just as electronic systems implement computation in terms
of voltage (energy per unit charge), molecular systems com-
pute in terms of chemical concentrations (molecules per unit
volume). Indeed, the field of molecular computation strives
for molecular implementations of computational processes –
that is to say processes that transform input concentrations
of chemical types into output concentrations of chemical
types [1], [2], [3], [4], [5], [6].

Yet the impetus of the field is not computation per se;
chemical systems will never be useful for number crunch-
ing. Rather the field aims for the design custom, embedded
biological “sensors” and “controllers” – viruses and bacteria
that are engineered to perform useful tasks in situ, such as
cancer detection and drug therapy. Exciting work in this vein
includes [7], [8], [9], [10].

As one might expect, the success of these endeavors has
mostly been attributable to the experimental expertise of the
practitioners in specific domains of biology. However, the field
has reached a stage where it is beneficial to bring in expertise
from computer engineering and from circuit design.

Indeed, there have been several attempts to apply concepts
from digital circuit theory to biological engineering. The view
that the presence of a type of molecule, such as a protein,
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corresponds to logical one and its absence corresponds to
logical zero, is contained in much of this prior work, either
explicitly or implicitly. Numerous types of genetic gates
have been proposed [11], [12], [13], [14], [15], [16], [17],
[18]. Also, dating back to seminal work by Kauffman, gene
networks are often modeled as directed graphs in which there
is an arrow from one node to another if and only if there is a
causal link between the corresponding genes; the node itself
is viewed as a Boolean function of its inputs; its state is either
“on” or “off” depending on the level of gene expression [19].

Prior work has established general mechanisms for molec-
ular computation [20], [21], [22] as well as specific com-
putational constructs: logical operations such as copying,
comparing and incrementing/decrementing [23]; programming
constructs such as “for” and “while” loops [24]; arithmetic
operations such as multiplication, exponentiation and loga-
rithms [23], [24]; and signal processing operations such as
filtering [25], [26].

In this paper, we present a novel methodology for im-
plementing digital logic with molecular reactions based on
a bistable mechanism for representing bits. The notion of
bistability is not new [27]. We apply it in a novel way,
with a form of “dual-rail” encoding: the value of a bit is
not determined by the concentration of a single molecular
type. Rather, it is the comparison of the concentrations of two
complementary types that determines if the bit is “0” or “1”.
This mechanism is robust: any small amount of perturbation or
leakage in the concentrations quickly gets cleared out and the
signal value is not affected. Based on this bit representation,
we present designs for combinational components – AND, OR,
and XOR – as well as for sequential components – D latches
and D flip-flops. We illustrate the use of these components
with two full-fledged design examples: a binary counter and
a linear feedback shift register (LFSR) [28].

We validate the designs through simulations of the chemical
kinetics, based on ordinary differential equations – the equiv-
alent of SPICE simulations for electronic systems [29]. The
simulations results show that our gates, our counter, and our
LFSR produce nearly perfect digital signal values.

The paper is organized as follows. In Section II, we present
some general background information on the computational
model and simulation techniques for molecular reactions. In
Section III, we describe the bistable mechanism for represent-
ing binary bits. In Section IV, we discuss the implementation
of logic gates. In Section V, we discuss the implementation



of D latches and D flip-flops. In Section VI, we present
the examples of a binary counter and an LFSR. Finally, in
Section VII, we discuss potential applications of our design
methodology.

II. COMPUTATIONAL MODEL

A molecular system consists of a set of chemical reactions,
each specifying a rule for how types of molecules combine.
For instance,

A + B
k−→ 2C (1)

specifies that one molecule of A combines with one molecule
of B to produce two molecules of C. This reaction fires at
a rate proportional to a kinetic constant k. We model the
molecular dynamics in terms of mass-action kinetics [30],
[31]: reaction rates are proportional to (1) the concentrations of
the participating molecular types; and (2) the kinetic constants.
Accordingly, for the reaction above, the rate of change in the
concentrations of A, B and C is

−d[A]
dt

= −d[B]
dt

=
1
2

d[C]
dt

= k[A][B], (2)

(here [·] denotes concentration). Concentration is defined to
be the quantity of molecules per unit volume. Without loss
of generality, we use unitless numbers for concentrations and
kinetic constants. These can be readily mapped to values with
units in a physical implementation.

Given a coupled set of chemical reactions, one obtains a set
of ordinary differential equations. These can readily be solved
numerically. Throughout this paper, we present simulation
results obtained with MATLAB. For instance, consider the
following set of three reactions (known as Lotka-Volterra
system [32]):

X
α−→ 2X

X + Y
β−→ 2Y

Y
γ−→ ∅.

(3)

The kinetic equation for this system is

d[X]
dt

= αX − βXY (4)

d[Y ]
dt

= βXY − γY.

If initial concentrations of types X and Y are given, their
concentrations as a function of time t can be obtained by
solving this set of ordinary differential equations. Figure 1
shows how the concentrations of X and Y oscillate over time
when α = 1, β = 1, γ = 1 and the initial concentrations are
set to [X] = 10 and [Y ] = 10.

In our methodology, we use only coarse rate categories
(“fast” and “slow”) for the kinetic constants. Given such
categories, the computation is robust regardless of the specific
reaction rates. In particular, it does not matter how fast any
“fast” reaction is – only that “fast” reactions are fast relative
to “slow” reactions. This is crucial for mapping a set of
reactions onto specific chemical substrates. (Throughout this
paper, unless denoted as “fast” over the arrow, all reactions
are assumed to be in the “slow” category.) All of our designs
consist of either unimolecular or bimolecular reactions, i.e.,
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Fig. 1: ODE simulation results of Lotka-Volterra System.

reactions with one or two reactants, respectively. This too
is important for mapping to chemical substrates, since the
kinetics of reactions with more than two reactants are complex
and often physically unrealistic.

III. BIT REPRESENTATION

The most straightforward interpretation of binary values in
the context of molecular computation is to assign a threshold
to the concentration of a designated molecular type [33], [34].
When the concentration exceeds a threshold level, the bit is
considered a logical 1; otherwise it is consider a logical 0. Al-
though such a representation is conceptually simple, it requires
external mechanisms for comparing the concentration of the
designated molecular type with the threshold. Furthermore, it
suffers from signal degradation over time: unwanted residue
accumulates every time a signal is changed, unless there is
some mechanism to clear the signal.

To mitigate these issues, we use a complementary represen-
tation (reminiscent of a “dual-rail” encoding). For a single bit
X , we use two molecular types, X0 and X1. The presence of
X0 indicates that X is set to 0; the presence of X1 indicates
that X is set to 1. Clearly, X0 and X1 should not be present
at the same time or else the value of X would be ambiguous.
We use following set of reactions to ensure that this does not
happen:

X0 + X1 −→ SX

SX + X0 −→ 3X0

SX + X1 −→ 3X1.
(5)

In Reactions 5, a molecule of X0 combines with a molecule
of X1 to produce a molecule of SX . This molecule of SX then
combines with a molecule of X0 or one of X1, depending
on which it meets first. The choice is competitive: both X0

and X1 are trying to increase their concentration via the
intermediary type SX ; whichever has a higher concentration
wins. The concentration of the loser drops to zero. So this
mechanism clears out the leakage of molecular types that
would otherwise occur when bits are set.

To further elucidate the behavior of Reactions 5, consider



their kinetic equations:

d[SX ]
dt

= k[X0][X1]− k[SX ][X0]− k[SX ][X1]

d[X0]
dt

= −k[X0][X1] + 2k[SX ][X0] (6)

d[X1]
dt

= −k[X0][X1] + 2k[SX ][X1].

Here, k is the kinetic constant for these reactions (all
are in the “slow” category). Suppose the combined initial
concentration of X0 and X1 is C. Suppose that the initial
concentrations of SX is 0. For a steady-state solution, let
d[SX ]

dt = d[SY ]
dt = d[SZ ]

dt = 0. There are, in fact, three steady-
state solutions: {X0 = X1 = C

2 }, {X0 = 0, X1 = C}, and
{X0 = C,X1 = 0}. The first is unstable. It is a saddle point:
any small perturbation that makes the concentrations of X0

and X1 unequal leads to one of the other two solutions. These
solutions are both stable; this bistability forms the basis of our
representation of a bit.

IV. IMPLEMENTING LOGIC GATES

Given this robust representation of binary bits, we demon-
strate how to implement logic gates with molecular reactions.
We only consider two-input gates; gates with more than two
inputs can be easily implemented by cascading two-input
gates.

Suppose the inputs of a gate are X and Y , and the output
is Z. These signals are represented by the concentrations of
X0/X1, Y0/Y1, and Z0/Z1, respectively. Each one of X , Y ,
and Z is regulated by its own version of the bit operation
reactions:

X0 + X1 −→ SX

SX + X0 −→ 3X0

SX + X1 −→ 3X1

Y0 + Y1 −→ SY

SY + Y0 −→ 3Y0

SY + Y1 −→ 3Y1

Z0 + Z1 −→ SZ

SZ + Z0 −→ 3Z0

SZ + Z1 −→ 3Z1.

(7)

For each of the four entries in the truth table for the gate,
if the value of Z is 1, then molecules of Z0, if any, should
be transferred to Z1. Similarly, if the value of Z is 0, then
molecules of Z1, if any, should be transferred to Z0.

A. AND Gate and OR Gate

Let us first consider an AND gate. By definition, either
X = 0 or Y = 0 sets Z to 0, which means that when either
X0 or Y0 is present, Z0 should be generated and Z1 should
be cleared out. This is implemented by the reactions

X0 + Z1 −→ X0 + Z0

Y0 + Z1 −→ Y0 + Z0.
(8)

Here, X0 and Y0 transfer Z1 to Z0 but keep their own
concentrations unchanged. Z is set to 0 if it has not already
been.

Z should be set to 1 only when both X = 1 and Y = 1.
This is implemented by the reactions

X1 + Y1 −→ X1 + Y1 + Z ′
1

Z ′
1 −→ ∅

Z ′
1 + Z0 −→ Z1.

(9)

In the first reaction, X1 combines with Y1 to generate Z ′
1, an

indicator that Z should be set to 1. The concentrations of X1

and Y1 do not change. Z ′
1 is transferred to an external sink,

denoted by ∅, in the second reaction. (This could be a waste
type whose concentration we do not track.) When molecules
of both X1 and Y1 are present, these reactions maintain the
concentration of Z ′

1 at an equilibrium level. When one of X1

and Y1 is not present, Z ′
1 gets cleared out. In the last reaction,

Z ′
1 transfers Z0 to Z1. Taken together, Reactions 7, 8 and 9

implement an AND gate.
Simulation results for the AND gate, obtained by solving

ODEs corresponding to the reactions with MATLAB, are
shown in Figure 2. The initial concentrations were set as
follows: [Z1] = [Z ′

1] = 0, and [SX ] = [SY ] = [SZ ] = 0.
Note that Z0 can be set to any nonzero value C; we used
C = 10 in this simulation. We sweep the range of initial
values of [X1] and [Y1] from 0 to C; similarly, we sweep
X0 and Y0 from C to 0. The resulting values of Z1 for each
input combination are recorded. The figure demonstrates that
the AND gate works perfectly: when both [X1] > C

2 and
Y1 > C

2 , Z1 = C; otherwise Z1 = 0.
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Fig. 2: Simulation results of the kinetic equations for the AND
gate.

The reactions for the OR gate are similar to those for the
AND gate. Either X = 1 or Y = 1 sets Z to 1. This entails
having both X1 and Y1 transfer Z0 to Z1:

X1 + Z0 −→ X1 + Z1

Y1 + Z0 −→ Y1 + Z1.
(10)

When both X = 0 and Y = 0, molecules of Z1 are transferred
to Z0:

X0 + Y0 −→ X0 + Y0 + Z ′
0

Z ′
0 −→ ∅

Z ′
0 + Z1 −→ Z0.

(11)

Simulation results for the OR gate, obtained by solving
ODEs corresponding to the reactions with MATLAB, are



shown in Figure 3. The initial concentrations are the same
as those used for the AND gate.
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Fig. 3: Simulation results of the kinetic equations for the OR
gate.

NAND gate and NOR gate can be implemented by effecting
the transfers between Z0 and Z1 in the opposite directions of
those of the AND and OR gates. We illustrate for the NAND
gate only. Together with Reactions 7, the following reactions
implement the NAND gate:

X0 + Z0 −→ X0 + Z1

Y0 + Z0 −→ Y0 + Z1.
X1 + Y1 −→ X1 + Y1 + Z ′

0

Z ′
0 −→ ∅

Z ′
0 + Z1 −→ Z0.

(12)

B. XOR gate

We could, of course, implement an exclusive-OR (XOR)
gate with say NAND gates or NOR gates. Instead, we present
a direct implementation. For XOR gate, Z = 1 when X 6= Y .
Therefore, molecules of Z0 are transferred to Z1 when both
X0 and Y1 are present, or when both X1 and Y0 are present:

X0 + Y1 −→ X0 + Y1 + Z ′
1

X1 + Y0 −→ X1 + Y0 + Z ′
1

Z ′
1 −→ ∅

Z ′
1 + Z0 −→ Z1.

(13)

Similarly, when both X0 and Y0 are present, or when both X1

and Y1 are present, molecules of Z1 are transferred to Z0:

X0 + Y0 −→ X0 + Y0 + Z ′
0

X1 + Y1 −→ X1 + Y1 + Z ′
0

Z ′
0 −→ ∅

Z ′
0 + Z1 −→ Z0.

(14)

Simulation results for the XOR gate, obtained by solving
ODEs corresponding to the reactions with MATLAB, are
shown in Figure 4. The initial concentrations are the same
as those used for the AND and OR gates.

C. Kinetic Analysis

Reactions 7 strive to retain the previous value of Z. How-
ever, when the inputs of a gate change and molecules of one
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Fig. 4: Simulation results of the kinetic equations for the XOR
gate.

of Z0 or Z1 are transferred to the other, the “force” to keep the
previous value set by Reactions 7 is overcome by the “force”
changing it.

Consider an AND gate with X = 0, Y = 1 and Z =
1. Initially, [X0] = C, [Y1] = C and [Z1] = C, and the
concentrations of other types are all 0. As long as [Z1] >
[Z0], Reactions 7 transfer molecules of Z0 to Z1 to preserve
Z = 1. They compete with Reactions 8, which set Z = 0.
The reactions related to Z0 are:

Z0 + Z1
k−→ SZ

SZ + Z0
k−→ 3Z0

X0 + Z1
k−→ X0 + Z0.

(15)

Again, k is the kinetic constant for slow reactions. The rate
of change of Z0 is

d[Z0]
dt

= −k[Z0][Z1] + 2k[SZ ][Z0] + k[X0][Z1] (16)

= −k[Z0][Z1] + 2k[SZ ][Z0] + kC[Z1]

Since [Z0] ≤ C, d[Z0]
dt ≥ 0. d[Z0]

dt = 0 only when [Z0] = C.
This means Z1 will be continuously transferred to Z0, until
[Z0] reaches C. The “force” of an input bit changing an
output bit overcomes the “force” preserving the previous value.
Similar reasoning can be applied to the other cases of the AND
gate, and for the other gates.

V. IMPLEMENTING D FLIP-FLOP

In this section, we discuss the implementation of the key
block for sequential logic, namely a D flip-flop. We start by
implementing a D latch and then we implement a D flip-flip
using a master-slave configuration of D latches.

A. D Latch

A D latch has two inputs, the latch input and an enable
signal, and one output. When the enable signal is 1, the latch
output is equal to the latch input. When the enable signal
is 0, the latch holds the last input value that it saw before
the enable signal was still 1. We could, of course, implement
such a D latch with cross-coupled NOR gates. Instead, we



present a direct implementation based upon our bistable con-
struct for binary values. Indeed, Reactions 5 provide a state-
locking mechanism. Based on those reactions, we introduce an
enabling signal E such that value of the input is transferred
to output only when E = 1. When E = 0, the state-locking
mechanism holds the output value.

We first discuss the enabling signal E. Similar to other
bits, E is represented by molecular types E0 and E1. The
latch operation requires that only one of E0 and E1 is present
at a time; transitions between these values must be non-
overlapping. However, as external inputs, E0 and E1 can be
overlapped, particularly during the transition from E = 0 to
E = 1 or vice versa. We therefore use two other molecular
types, E′

0 and E′
1, as control signals. They are regulated by

following reactions:

E0 −→ E0 + E′
0

E1 −→ E1 + E′
1

E′
0 −→ ∅

E′
1 −→ ∅

E′
0 + E′

1
fast−→ ∅

(17)

In first two reactions, E0 and E1 continuously generate E′
0

and E′
1, respectively. Molecules of E′

0 and E′
1 go to an external

sink in the next two reactions, which ensures they exist only
when E0 or E1 is present, respectively. (The external sink can
be a waste type whose concentration we do not track.) The
last reaction quickly cancels out equal concentrations of E′

0

and E′
1. Note that this reaction is in the “fast” rate category;

this ensures that essentially molecules of only one of E′
0 and

E′
1 exist at any instant in time.
The D latch is implemented by following reactions:

E′
1 + D0 −→ E′

1 + D0 + Q′
0

E′
1 + D1 −→ E′

1 + D1 + Q′
1

Q′
0 −→ ∅

Q′
1 −→ ∅

Q′
0 + Q1 −→ Q0

Q′
1 + Q0 −→ Q1.

(18)

With enabling signal E′
1, the first two reactions generate Q′

0

or Q′
1, with presence of input signals D0 or D1, respectively.

The next two reactions ensure that molecules of Q′
0 (Q′

1) do
not accumulate when there are no molecules of D0 (D1) in
presence. Finally, the last two reactions set Q to 0 or 1, in
accordance with presence of Q′

0 or Q′
1.

Simulation results for the D latch are shown in Figure 5.
The concentrations of Q0 and Q1 are obtained from ODE sim-
ulations of kinetic equations corresponding to Reactions 17,
18, together with the bistable Reactions 5 for Q. The initial
conditions for the system are set to E0 = D0 = Q0 = C,
E1 = D1 = Q1 = 0, E′

0 = E′
1 = Q′

0 = Q′
1 = 0 and

SQ = 0. To test the effectiveness of Reactions 17, E0 and E1

are set to be overlapping sinusoidal signals. The “fast” kinetic
constant is set to be 100 times higher than the “slow” constant.
Figure 5a shows that E′

0 and E′
1 are non-overlapping version

of E0 and E1. Figure 5b illustrates the latching behavior. Q
follows D only when E′

1 is present.
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(b) Performance of the latch.

Fig. 5: Simulation results of the kinetic equations for the D
latch.

CLK

D M Q

0
E′

1
E′

Master Slave

Fig. 6: Master-slave structure of D a flip-flop.

B. D Flip-Flop

Unlike a latch, a flip-flop reacts to changes in its enabling
signal. If the enabling signal is clock, then the flip-flop only
grabs its input on the rising edge of the clock, that is to say
when the clock signal changes from 0 to 1. We implement
a D flip-flop with a master-slave configuration of D latches,
as shown in Figure 6. In this configuration, the signal D
goes through two D latches in series. When CLK = 0, the
master latch is enabled and the value of D passes through
it. Meanwhile, the slave latch retains its previous value. When
CLK turns to 1, the master latch is switched off and retains its



previous value. At the same time, slave latch is enabled and the
value from the master latch passes through. This mechanism
is implemented by the following reactions:

E′
0 + D0 −→ E′

0 + D0 + M ′
0

E′
0 + D1 −→ E′

0 + D1 + M ′
1

M ′
0 −→ ∅

M ′
1 −→ ∅

M ′
0 + M1 −→ M0

M ′
1 + M0 −→ M1

E′
1 + M0 −→ E′

1 + M0 + Q′
0

E′
1 + M1 −→ E′

1 + M1 + Q′
1

Q′
0 −→ ∅

Q′
1 −→ ∅

Q′
0 + Q1 −→ Q0

Q′
1 + Q0 −→ Q1.

(19)

The following reactions implement the enabling signal:

CLK0 −→ CLK0 + E′
0

CLK1 −→ CLK1 + E′
1

E′
0 −→ ∅

E′
1 −→ ∅

E′
0 + E′

1
fast−→ ∅.

(20)

We also include the bistable bit operation reactions for M and
Q. In the set of Reactions 19, the first six reactions implement
the master latch, which is enabled by E′

0. The slave latch,
enabled by E′

1, takes M0 and M1, the output of the master
latch, as its input signals. It is implemented by the last six
reactions.
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Fig. 7: Simulation results of the kinetic equations for the D
flip-flop.

The simulation results are shown in Figure 7. We randomly
generate the CLK signal and the input D. Clearly, the output
Q follows the value of D only at rising edges of the CLK
signal.1

1A discussion of how to generate proper “clock” signals is beyond the
scope of this paper. A variety of molecular oscillators have been proposed
in the literature; these could readily be used for this purpose. We point the
reader to prior work [35].

VI. EXAMPLES

In this section, we demonstrate two full-fledged examples
of digital designs implemented with molecular reactions: a
three-bit counter and a linear feedback shift register (LFSR).

A. A Three-Bit Counter

We implement the three-bit counter with our constructs for
logic gates and for D flip-flops (The design presented here can
be easily extended to an n-bit counter, for values of n > 3).
The schematic of the counter is shown in Figure 8. Molecular

M

Q

G
HF

J
KI

L

CLK

Fig. 8: Schematic of the counter.

types representing signals are labeled in the figure. Here, Q
represents the least significant bit; H represents the second
bit; K represents the most significant bit. F and I are the
input signal types for the last two flip-flops. The first flip-flop
does not required a designated input type, as we will discuss
later. M , G and J represent the internal signal types of each
flip-flop. Finally, L is the output type of the AND gate.

The reactions for the three flip-flops are:

E′
0 + Q0 −→ E′

0 + D0 + M ′
1

E′
0 + Q1 −→ E′

0 + D1 + M ′
0

M ′
0 −→ ∅

M ′
1 −→ ∅

M ′
0 + M1 −→ M0

M ′
1 + M0 −→ M1.

E′
1 + M0 −→ E′

1 + M0 + Q′
0

E′
1 + M1 −→ E′

1 + M1 + Q′
1

Q′
0 −→ ∅

Q′
1 −→ ∅

Q′
0 + Q1 −→ Q0

Q′
1 + Q0 −→ Q1

(21)

E′
0 + F0 −→ E′

0 + F0 + G′
0

E′
0 + F1 −→ E′

0 + F1 + G′
1

G′
0 −→ ∅

G′
1 −→ ∅

G′
0 + G1 −→ G0

G′
1 + G0 −→ G1.

E′
1 + G0 −→ E′

1 + G0 + H ′
0

E′
1 + G1 −→ E′

1 + G1 + H ′
1

H ′
0 −→ ∅

H ′
1 −→ ∅

H ′
0 + H1 −→ H0

H ′
1 + H0 −→ H1

(22)



and
E′

0 + I0 −→ E′
0 + I0 + J ′

0

E′
0 + I1 −→ E′

0 + I1 + J ′
1

J ′
0 −→ ∅

J ′
1 −→ ∅

J ′
0 + J1 −→ J0

J ′
1 + J0 −→ J1.

E′
1 + J0 −→ E′

1 + J0 + K ′
0

E′
1 + J1 −→ E′

1 + J1 + K ′
1

K ′
0 −→ ∅

K ′
1 −→ ∅

K ′
0 + K1 −→ K0

K ′
1 + K0 −→ K1.

(23)

Reactions 22 and 23 implement standard D flip-flops trans-
ferring F to H and I to K. In Reactions 21, the output Q
is directly fed back to the input; it sets the internal signal
M to the opposite value when E′

0 is present. This implicitly
implements an NOT gate and it eliminates the requirement of
a designated input type.

The AND gate and two XOR gates are implemented by the
following reactions:

H0 + L1 −→ H0 + L0

Q0 + L1 −→ Q0 + L0

H1 + Q1 −→ H1 + Q1 + L′
1

L′
1 −→ ∅

L′
1 + L0 −→ L1

(24)

and
H0 + Q1 −→ H0 + Q1 + F ′

1

H1 + Q0 −→ H1 + Q0 + F ′
1

H0 + Q0 −→ H0 + Q0 + F ′
0

H1 + Q1 −→ H1 + Q1 + F ′
0

F ′
0 −→ ∅

F ′
1 −→ ∅

F ′
1 + F0 −→ F1

F ′
0 + F1 −→ F0

K0 + L1 −→ K0 + L1 + I ′1
K1 + L0 −→ K1 + L0 + I ′1
K0 + L0 −→ K0 + L0 + I ′0
K1 + L1 −→ K1 + L1 + I ′0

I ′0 −→ ∅
I ′1 −→ ∅

I ′1 + I0 −→ I1

I ′0 + I1 −→ I0.

(25)

Reactions 20–25, together with the bistable bit operations,
implement the three-bit counter.

Simulation results, obtained by solving ODEs corresponding
to the reactions with MATLAB, are shown in Figure 9. We see
that the counter counts from “000” to “111” in eight cycles.

B. A Linear Feedback Shift Register

We demonstrate the design of a degree-4 LFSR. The
schematic of such an LFSR is shown in Figure 10. Its
feedback polynomial is x4 + x3 + 1. The four D flip-flops
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Fig. 9: Simulation results of the kinetic equations for the 3-bit
counter.
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Fig. 10: Schematic of the LFSR.

are implemented by reactions:

E′
0 + Xn−1

0 −→ E′
0 + Xn−1

0 + Mn
0
′

E′
0 + Xn−1

1 −→ E′
0 + Xn−1

1 + Mn
1
′

Mn
0
′ −→ ∅

Mn
1
′ −→ ∅

Mn
0
′ + Mn

1 −→ Mn
0

Mn
1
′ + Mn

0 −→ Mn
1 .

E′
1 + Mn

0 −→ E′
1 + Mn

0 + Xn
0
′

E′
1 + Mn

1 −→ E′
1 + Mn

1 + Xn
1
′

Xn
0
′ −→ ∅

Xn
1
′ −→ ∅

Xn
0
′ + Xn

1 −→ Xn
0

Xn
1
′ + Xn

0 −→ Xn
1

(26)

where n = 1, 2, 3, 4. The XOR gate is implemented by the
following reactions:

X3
0 + X4

1 −→ X3
0 + X4

1 + X0
1
′

X3
1 + X4

0 −→ X3
1 + X4

0 + X0
1
′

X3
0 + X4

0 −→ X3
0 + X4

0 + X0
0
′

X3
1 + X4

1 −→ X3
1 + X4

1 + X0
0
′

X0
1
′ −→ ∅

X0
0
′ −→ ∅

X0
1
′ + X0

0 −→ X0
1

X0
0
′ + X0

1 −→ X0
0 .

(27)

Simulation results, obtained by solving ODEs corresponding
to the reactions with MATLAB, are shown in Figure 11. We
set initial values to x1x2x3x4 =“1111”. All possible states,
except “0000”, are visited in 15 clock cycles.
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Fig. 11: Simulation results of the kinetic equations for the
LFSR.

VII. REMARKS

Although pertaining to biology, the contributions of this
paper are not experimental nor empirical; rather they are con-
structive and conceptual. The premise is that one can design a
set of molecular reactions; such reactions translate into a set
of coupled differential equations modeling the rate of change
of concentrations according to chemical kinetics; simulating
the differential equations provides an accurate characterizing
of how the chemical reactions would behave. The challenge is
how to design the set of reactions to implement specific forms
of computation.

We are the first to design robust digital logic with molecular
reactions. Compared to previous attempts, including those
describing binary counters [33], [36], the bit transitions in our
designs are remarkably crisp. Errors do not accumulate across
cycles in sequential computation. As a result, our constructs
such as the counter and the LFSR can run indefinitely. Signifi-
cantly, our constructs do not depend on specific reaction rates;
the computation is accurate for a wide range of rates. This is
crucial for mapping the design to specific chemical substrates.

We are exploring the mechanism of DNA-strand displace-
ment as an experimental chassis [6]. The kinetics of arbitrary
chemical reactions can be emulated with such strand dis-
placements [5]. Reaction rates are controlled by designing se-
quences with different binding strengths. The binding strengths
are controlled by the length and sequence composition of
“toehold” sequences of DNA. With the right choice of toehold
sequences, reaction rates differing by as much as 106 can be
achieved. Our contribution can be positioned as the “front-
end” of the design flow; the DNA assembler and experimental
chassis described by these authors constitute the “back-end”.
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