
Counting Networks

JAMES ASPNES

IBhl,41m[zdetz Researclz Center. Sun Jose, Cullforrnu

MAURICE HE RLIHY

Digital Equlpmetu Corporatwn, Ccmzbr@e, hf&WUChLIS~tlS

AND

NIR SHAVIT

Massachusetts Institute of Technoloo, Cambridge, Massuc/lu.setts

Abstract. Many fundamental multi-processor coordination problems can be expressed as cozwtmg

problems: Processes must cooperate to assign successive values from a gwen range, such as
addresses in memory or destinations on an interconnection network. Coovcntlonal solutlons to

these problems perform poorly because of synchronization bottlenecks and high memory con-

tention.
Motivated by observations on the behawor of sorting networks, we offer a new approach to

solving such problems. by introducing countuz~ networks, a new class of networks that can be used
to count. We give two counting network constructions, one of depth log n(1 + log n)/2 using
n log n(l + log n)/4 “gates,” and a second of depth log2 ?I using n logz n/2 gate~. These
networks avoid the sequential bottlenecks inherent to earlier solutions, and substantlallv lower

the memory contention.
Finally, to show that counting networks are not merely mathematical creatures, we provide

experimental evidence that they outperform conventional synchronization techniques under a
variety of circumstances.

A preliminary velsion of this work appeared in the Proceedings of t}le ?3rd .4Cbf SynzposZunz on the

Theov of Compzltmg (New Orleans, La., May 6-8). ACM, New York, 1991, pp. 348-358.

A large part of this work was performed while J. Aspnes was at Carnegie-Mellon University.

The work of N. Shavit was supported by Office of Naval Research (ONR) contr~ct NOO014-91 -J-
1046, National Science Foundation (NSF) grant CCR 89-15206, DARPA contract NO(K)14-89-J-
1988, and by a Rothschild postdoctoral fellowship. A large part of thn work was performed while
N. Shavit was at IBM’s Almaden Research Center.

Authors’ present addresses: J. Aspnes, IBM Almaden Research Center, 650 Harry Road, San
Jose, CA 95120; M. Herlihy, Digital Equipment Corporation. Cambridge Research Laboratory,

One Kendall Square, Cambridge, MA 02139; N. Shavit, Computer Science Department, School of
Mathematics, Tel-Aviv University, Tel-Aviv, 69978, Israel.

Permission to copy without fee all or part of this mater-la] is granted prov]ded that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requxes a fee and/or
specific permission.
01994 ACM 0004-541 1/94/0900-1020 $03.50

Jmu’nal d the Assoc!atmn fo, Comp”tmg M~chmery, Vol 41, No 5, September 19!44, pp 1020-1048

Counting Networks 1021

Categories and Subject Descriptors: C.2. 1 [Computer-Communication Networks]: Network Archi-

tecture and Design—distributed networks; network topology; C.2.4 [Computer-Communication

Networks]: Distributed Systems—distributed qyrlicutions; F. 1.2 [Computation by Abstract Devices]:

Modes of Computation—parallelism and conczarency; G.2. 1 [Discrete Mathematics]: Combina-

torics—counting problems: G.2.2 [Discrete Mathematics]: Graph Theo~—graph algorithms; net-

~,ork problems

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Counting networks, hot-spots, network routing, parallel

processing

1. Introduction

Many fundamental multi-processor coordination problems can be expressed as

counting problems: Processors collectively assign successive values from a given

range, such as addresses in memo~ or destinations on an interconnection

network. In this paper, we offer a new approach to solving such problems, by

introducing counting networks, a new class of networks that can be used to

count.

Counting networks, like sorting networks [Ajtai et al. 1983; Batcher 1968;

Cormen et al. 1990], are constructed from simple two-input two-output comput-

ing elements called balancers, connected to one another by wires. However,

while an n input sorting network sorts a collection of n input values only if

they arrive together, on separate wires, and propagate through the network in

lockstep, a counting network can count any number N >> n of input tokens

even if they arrive at arbitrary times, are distributed unevenly among the input

wires, and propagate through the network asynchronously.

Figure 2 provides an example of an execution of a 4-input, 4-output,

counting network. A balancer is represented by two dots and a vertical line (see

Figure 1). Intuitively, a balancer is just a toggle mechanism, 1 alternately

forwarding inputs to its top and bottom output wires. It thus balances the

number of tokens on its output wires. In the example of Figure 2, input tokens

arrive on the network’s input wires one after the other. For convenience, we

have numbered them by the order of their arrival (these numbers are not used

by the network). As can be seen, the first input (numbered 1) enters on line 2

and leaves on line 1, the second leaves on line 2, and in general, the Nth token

will leave on line N mod 4. (The reader is encouraged to try this for him/her-

self.) Thus, if on the ith output line the network assigns to consecutive outputs

thenumbers i,i+4, i+2” 4,..., it is counting the number of input tokens

without ever passing them all through a shared computing element!

Counting networks achieve a high level of throughput by decomposing

interactions among processes into pieces that can be performed in parallel.

This decomposition has two performance benefits: It eliminates serial bottle-

necks and reduces memory contention. In practice, the performance of many

shared-memory algorithms is often limited by conflicts at certain widely-shared

memory locations, often called hot spots [Pfister and Norton 1985]. Reducing

10ne can implement a balancer using a read-modify-write operation such as Compare & Swap, or
a short critical section.

1022 J. ASPNES ET AL.

hot-spot conflicts has been the focus of hardware architecture design and

experimental work in software.c

Counting networks are also nonblocking: processes that undergo halting

failures or delays while using a counting network do not prevent other

processes from making progress. This property is important because existing

shared-memory architectures are themselves inherently asynchronous; process

step times are subject to timing uncertainties due to variations in instruction

complexity, page faults, cache misses, and operating system activities such as

preemption or swapping.

Section 2 defines counting networks. In Sections 3 and 4, we give two distinct

counting network constructions, each of depth less than or equal to Iogz n,

each using less than or equal to (n Iogz n)/2 balancers. To illustrate that

counting networks are useful, we use counting networks to construct high-

throughput shared-memory implementations of concurrent data structures

such as shared counters, producer/consumer buffers, and barriers. A shared

coLLnter is simply an object that issues the numbers O to m – 1 in response to

tn requests by processes. Shared counters are central to a number of shared-

memory synchronization algorithms.3 A pro~iLlcer/cotlsutner buffer is a data

structure in which items inserted by a pool of producer processes are removed

by a pool of consumer processes. A barrier is a data structure that ensures that

no process advances beyond a particular point in a computation until all

processes have arrived at that point. Compared to conventional techniques

such as spin locks or semaphores, our counting network implementations

provide higher throughput, less memory contention, and better tolerance for

failures and delays. The implementations can be found in Section 5.

Our analysis of the counting network construction is supported by experi-

ment. In Section 6, we compare the performance of several implementations of

shared counters, producer/consumer buffers, and barrier synchronization on a

shared-memory tnultiprocessor. When the level of concurrency is sufficiently

high, the counting network implementations outperform conventional imple-

mentations based on spin locks, sometimes dramatically. Finally, Section 7

describes how to mathematically verify that a given network counts.

In summary, counting networks represent a new class of concurrent algo-

rithms. They have a rich mathematical structure, they provide effective solu-

tions to important problems, and they perform well in practice. We believe that

counting networks have other potential uses, for example as interconnection

networks [Vishkin 19S4] or as load balancers [Peleg and Upfal 1986], and that

they deserve further attention.

2. Net~’orks that Coutzt

2.1. COUNTING NETWORKS. Counting networks belong to a larger class of

networks called balancing networks, constructed from wires and computing

elements called balancers, in a manner similar to the way in which comparison

networks [Cormen et al. 1990] are constructed from wires and comparators. We

begin by describing balancing networks.

‘For examples of hm-dware mchltecture dcslgn, sce Gotthcb et al. [1983: 1Y84], Kruskal et al.
[1986]. and Pfwter et al. [1985]. For examples of experimental work in software, see Anderson

[1989], Gawhck [1985], Goodman et dl. [19s9], and Mellor-Crummey and Scott [1990: 1991].
~For example, sec Ellis and Olson [1988], Freudenthd and Gottheb [1991], Gottlleb et al. [1983]
wld Stone [1984].

Input
x(,+x,

2 1 76421

X“+x, 1 53
2

FIG. 1. A balancer.

A balancer is a computing element with two

I

1023

out~ut

1357

246

input wires and two output

wires~ (see Figure 1). T~ken~ arrive on the balance~’s input wires at arbitrary

times, and are output on its output wires. Intuitively, one may think of a

balancer as a toggle mechanism that given a stream of input tokens, repeatedly

sends one token to the top output wire and one to the bottom, effectively

balancing the number of tokens that have been output on its output wires. We

denote by x,, i G {O, 1} the number of input tokens ever received on the

balancer’s ith input wire, and similarly by y,, i G {O, 1} the number of tokens

ever output on its ith output wire. Throughout the paper, we will abuse this

notation and use x, (y,) both as the name of the ith input (output) wire and a

count of the number of input tokens received on the wire.

Let the state of a balancer at a given time be defined as the collection of

tokens on its input and output wires. For the sake of clarity, we will assume

that tokens are all distinct. We denote by the pair (t, b),the state transition in

which the token t passes from an input wire to an output wire of the balancer

b.

We can now formally state the safety and liveness properties of a balancer:

(1) In any state xc, + xl > y,} + yl (i.e., a balancer never creates output tokens).

(2) Given any finite number of input tokens m =X. -t xl to the balancer, it is
guaranteed that within a finite amount of time, it will reach a quiescent

state, that is, one in which the sets of input and output tokens are the

same. In any quiescent state, X. + xl = y[l + yl = m.

(3) In any quiescent state, y,, = [m/21 and Y1 = [m\2].

A balancing network of width w is a collection of balancers, where output

wires are connected to input wires, having w designated input wires

xo,. xl,. ... x,v_l (which are not connected to output wires of balances), w
designated output wires YO, y,, . . . , y,._, (similarly unconnected), and contain-

ing no cycles. Let the state of a network at a given time be defined as the union

of the states of all its component balancers. The safety and liveness of the

network follow naturally from the above network definition and the properties

of balancers, namely, that it is always the case that X~:tj x, > ~~=-~ y,, and for

any finite sequence of HZ input tokens, within finite time the network reaches a

quiescent state, that is, one in which ~~:(~ y, = m.

It is important to note that we make no assumptions about the timing of

token transitions from balancer to balancer in the network—the nehvork’s

behavior is completely asynchronous. Although balancer transitions can occur

concurrently, it is convenient to model them using an interleaving semantics in

the style of Lynch and Tuttle [1987]. An execution of a network is a finite

sequence so, fl, .$l,. ... e,l, ~n
. .

or mfmlte sequence .s., e,, sl, ..- of alternating

states and balancer transitions such that for each (s,, e, +,,s, +,), the transition

JIn Figure 1 as WCII as in the sequel, we adopt the notation of [Cormen et al. 1990] and the draw
wires as horizontal Iincs with bakmcers stretched vertically.

1024 J. .ASPNES ET AL.

e, +, carriers state s, to s,+,. A schedule is the subsequence of transitions

occurring in an execution. A schedule is LY?lid if it is induced by some

execution, and complete if it is induced by an execution which results in a

quiescent state. A schedule s is sequential if for any two transitions e, = (t,, b,)

and e, = (t,,b,),where t, and t, are the same token, then all transitions

between them also involve that token.

On a shared memory multiprocessor, a balancing network is implemented as

a shared data structure, where balancers are records, and wires are pointers

from one record to another. Each of the machine’s asynchronous processors

runs a program that repeatedly traverses the data structure from some input

pointer (either preassigned or chosen at random) to some output pointer, each

time shepherding a new token through the network (see Section 5).

We define the depth of a balancing network to be the maximal depth of any

wire, where the depth of a wire is defined as O for a network input wire, and

max(deptiz(xO), depth (xl)) + 1

for the output wires of a balancer having input wires X. and xl. We can thus

formulate the following straightforward yet useful lemma:

LEMMA 2.1. [j the transition of a token from the input to the olltput by any

balaizcer (including the tinze spent traversing the input wire) takes at most A time,

tllcrz any input token will exit the network within time at most A times the tletwork

depth.

A counting network of width w is a balancing network whose outputs

y(,, ..., y,, _, satisfy the following step property.

In any quiescent state, O s y, – y, s 1 for any i <j.

To illustrate this property, consider an execution in which tokens traverse

the network sequentially, one completely after the other. Figure 2 shows such

an execution on BITONIC [4] counting network, which we will define formally in

Section 3. As can be seen, the network moves input tokens to output wires in

increasing order modulo w. Balancing networks having this property are called

counting networks because they can easily be adapted to count the total

number of tokens that have entered the network. Counting is done by adding a

“local counter” to each output wire i, so that tokens coming out of that wire

are consecutively assigned numbers i, i + w, i + (y, – l)w. (This applica-

tion is described in greater detail in Section 5.)

The step property can be defined in a number of ways that we will use

interchangeably. The connection between them is stated in the following
lemma:

LEMMA 2.2. Ify,}, . . ., y,V_, is a seqwence of nonrwgatil e integers, the following

statements are all equi[’alent:

(1) Foranyi <j, O<y[-yJ <l.

(2) Either y, = y, for all i, j, or there exists some c such that for any i < c and

J>c, y,–y, =l.

(3) If m = Z;=-~~J,, y, = [(nz – i)/wl.

It is the third form of the step property that makes counting networks usable

for counting.

Counting Networks 1(325

Inputs outputs

14 15 15 ,5

3 26 26
431 26

26 3
5

37
. w 37

57 47
762

44
w

FIG.2. Asequential execution fora BIToN1c [4]counting network.

PROOF. We will prove that 3 implies 1, 1 implies 2, and 2 implies 3.

For any indexes a < b, since O < a < b < w, it must be that

Thus, 3 implies 1.

Assume 1 holds for the sequence ycl, ..., yW_,. If for every O < i < ~ < W,

Y, – Y, = Q then 2 follows. Otherwise, there exists the largest a such that there
is a b for which a < b and y. – yh = 1. From a’s being largest, we get that

Y. –Ya+l = l, and from lwe get y, =y. forany O<i<a and y, =Y. +l for

any a + 1 < i < w. Choosing c = a + 1 completes the proof. Thus, 1 implies

2.

Assume by way of contradiction that 3 does not hold and 2 does. Without

loss of generality, there thus exists the smallest a such that m = Z~.-t~J’, and

y. # ((m – a)/wl. If y,, < [(n? – a)/wl, then since X$I~yl = m, by simple

arithmetic, there must exist a b > a such that y~ > [(m – b)/w 1. Since O <

[(m – LZ)/wl – [(WZ – b)\wl <1, y~ – y. >1, and no c as in 2 exists, a
contradiction. Similarly, if yti > [(FIZ – a)/w 1, there exists a b + a such that

y~ < [(m – b)/wl, and y. – yb >2. Again, no c as in 2 exists, a contradiction.
Thus, 2 implies 3. ❑

The requirement that a quiescent counting network’s outputs have the step

property might appear to tell us little about the behavior of a counting network

during an asynchronous execution, but in fact it is surprisingly powerful. Even

in a state in which many tokens are passing through the network, the network

must eventually settle into a quiescent state if no new tokens enter the

network. This constraint makes it possible to prove such important properties

as the following:

LEMMA 2.3. Suppose that in a given execution a counting network with oLttput

sequence yo, ..., y,v _, is in a state where m tokens halle entered the network and

m‘ tokens haue left it. Then there exist nonnegatiL1e integers d,, O < i < w, such
tlzat X~=-Oldi = m – m’ and yi + d, = [(m – i)/wl.

PROOF. Suppose not. There is some execution e for which the nonnegative

integers d,, O < i < w do not exist. If we extend e to a complete execution e‘

allowing no additional tokens to enter the network, then, at the end of e‘, the

1026 J. ASPNES ET AL.

Xo

xl

X2

X3

X4

X5

X6

x.

YO

y]

y2

Y3
y.

Y5
yb

Y?

merger[kl

FIG. 3. Recurswe structure of a BITONIC [8] counting network

network will be in a quiescent state where the step property does not hold, a

contradiction. ❑

In a sequential execution, where tokens traverse the network one at a time,

the network is quiescent every time a token leaves. In this case the ith token to

enter will leave on output i mod w. The lemma shows that in a concurrent,

asynchronous execution of any counting network, any “gap” in this sequence of

mod w counts corresponds to tokens still traversing the network. This critical

property holds in any execution, even if quiescent states never occur, and even

though the definition makes no explicit reference to nonquiescent states.

2.2. COUNTING vs. SORTING. A balancing network and a comparison net-

work are isomorphic if one can be constructed from the other by replacing

balancers by comparators or vice versa. The counting networks introduced in

this paper are isomorphic to the Bitonic sorting network of Batcher [1968] and

to the Periodic Balanced sorting network of Dowd et al. [1989]. ‘There is a

sense in which constructing counting networks is “harder” than constructing

sorting networks:

THEOREM 2.4. If a balancing network counts, then its isomorphic comparison

network sorts, but not L1ice Lersa.

PROOF. It is easy to verify that balancing networks isomorphic to the

EVEN-ODD or lNSERTION sorting networks [Cormen et al. 1990] are not count-

ing networks.

For the other direction, we construct a mapping from the comparison

network transitions to the isomorphic balancing network transitions.

By the O– 1 principle [Cormen et al. 1990], a comparison network that sorts

all sequences of O’s and 1’s is a sorting network. Take any arbitrary sequence of

O’s and 1’s as inputs to the comparison network, and for the balancing network

place a token on each O input wire and no token on each 1 input wire. We now

show that if we run both networks in lockstep, the balancing network will

simulate the comparison network, that is, the correspondence between tokens

and O’s holds.

The proof is by induction on the depth of the network. For level 0, the claim

holds by construction. Assuming it holds for wires of a given level k, let us

prove it holds for level k + 1. On every gate where two O’s meet in the

comparison network, two tokens meet in the balancing network, so one O

leaves on each wire in the comparison network on level k + 1, and one token

Counting Networks 1027

leaves on each line in the balancing network on level k + 1. On every gate

where two 1‘s meet in the comparison network, no tokens meet in the

balancing network, so a 1 leaves on each level k + 1 wire in the comparison

network, and no tokens leave in the balancing network. On every gate where a

O and 1 meet in the comparison network, the O leaves on the lower wire and

the 1 on the upper wire on level k + 1,while in the balancing network the

token leaves on the lower wire, and no token leaves on the upper wire,

If the balancing network is a counting network, that is, it has the step

property on its output level wires, then the comparison network must have

sorted the input sequence of O’s and 1’s. ❑

COROLLARY 2.5. The depth of any counting network is at least Q(log n).

Though, in general, a balancing network isomorphic to a sorting network is

not guaranteed to count, its outputs will always have the step property if the

input sequence satisfies the following smoothness propeny:

A sequence xO,.. .,xW_l is smooth if for all i <j, Ixi – x,l < 1.

This observation is stated formally below:

THEOREM 2.6. If a balancing network is isomorphic to a sorting network, and

its input sequenee is smooth, then its oLltput sequence in any quiescent state has the

step property.

PROOF. The proof follows along the lines of Theorem 2.4. We will show the

result by constructing a mapping, this time from the transitions of the balanc-

ing network to the transitions of the isomorphic sorting network. However,

unlike in the proof of Theorem 2.4, we will map sets of transitions of the

balancing network to single transitions of the isomorphic sorting network, We

do this by considering the number of tokens that have passed along each wire

of a balancing network in an execution ending in a quiescent state. From this

perspective the transitions of a balancer gate can be mapped to those of a

mathematical device that receives integers XO and xl (numbers of tokens) and

outputs integers [(x,] + xl)/2] and [(x,, + xl)/2].

Given that the input sequence to the balancing network is smooth, there is a

quantity x such that each input wire carries either x or x + 1 tokens. By

simple induction on the depth of the network, one can prove that the inputs

and outputs of any balancer in a network with x or x + 1 tokens on each input

wire, will have as outputs x or x + 1 tokens. and that for a given balancer:

(1) If both input wires have x tokens, then both outputs will have x.
(2) If one input has .x and the other has x + 1, then the output on the top wire

will be x + 1 tokens and on the bottom wire it will be x tokens.

(3) If both input wires have x + 1 tokens, then both output wires will have

.x + 1 tokens.

This behavior, if one considers x and x + 1 as integers, maps precisely to

that of comparators of numeric values in a comparison network. Consequently.
in a quiescent state of a balancing network isomorphic to a sorting network, if

the network as a whole was given a smooth input sequence, its output sequence

must map to a sorted sequence of integers x and x + 1, implying that it has

the step property. u

] (p~ J. ASPNES ET AL.

x, Y(.

x Y

x. Y-
XJ y.!

x. Y-
X> Yb

Xb Yc

x Y:

x,

x

x_ E
Y!,

Y-

y>

flerger[8] Pierger[81

FIG. 4. A MER~~R [8] balancing network

3. A Bitonic Coutlting Network

Naturally, counting networks are interesting only if they can be constructed. In

this section, we describe how to construct a counting network whose width is

any power of 2. The layout of this network is isomorphic to Batcher’s famous

Bitonic sorting network [Batcher 1968; Cormen et al, 1990], though its behavior

and correctness arguments are completely different. We give an inductive

construction, as this will later aid us in proving its correctness.

Define the width WI balancing network MERGER[W], as follows. It has two

sequences of inputs of length uI/2, x and x’, and a single sequence of outputs

)’, of length w’. MERGERIW1 will be constructed to guarantee that in a quiescent
state where the sequences x and x‘ have the step property, y will also have the

step property, a fact that will be proved in the next section.

We define the network MERGER[)iI] inductively (see example in Figure 4).

Since w is a power of 2, we will repeatedly use the notation 2k in place of w.

When k is equal to 1, the MERGER[2k] network consists of a single balancer.

For k > 1, we construct the MERGER[2k] network with input sequences x and

x‘ from two MERGER[k] networks and k balancers. Using a MERGER[k]

nehvork we merge the even subsequence x(], Xz, x~ ~ of x with the odd
. .

subsequence xj, x;,.r~_, ot x’ (I.e., the sequence x(],. . . . x,, _z, x;, x,, - ,

is the input to the MERGER[k] network) while with a second MERGER[k]

network we merge the odd subsequence of x with the even subsequence of x‘.

Call the outputs of these two MERGER[k] networks z and z‘. The final stage of

the network combines z and z’ by sending each pair of wires z, and z: into a

balancer whose outputs yield },, and y:, +,.
The MERGER[W] network consists of log w layers of w/2 balancers each.

MERC;ER[W] guarantees the step property on its outputs only when its inputs

also have the step property—but we can ensure this property by filtering these

inputs through smaller counting networks. We define BITONICIW] to be the

network constructed by passing the outputs from two BITONICIWJ/2] networks

into a MIZRGER[}L] network, where the induction is grounded in the BITONIC[l]

network which contains no balancers and simply passes its input directly to its

output. This construction gives us a network consisting of
(’og’~+’l layers

each consisting of Lv/2 balancers.

Counting Networks 1029

3.1. PROOF OF CORRECTNESS. In this section we show that BITONIC[W] is a

counting network. Before examining the network itself, we present some simple

lemmas about sequences having the step property.

LEMMA 3.1. If a seqaence has the step property, then so do all its subse-

quences.

LEMMA 3.2. If x{),..., x~ _, has the step property, then its e[en and odd

subsequences satisjjx

PROOF. Either X2, = X2,+, for O s i < k/2, or by Lemma 2.2 there exists a

unique j such that x~j = Xz, +, +Iandxc, =xz, +l foralli#j.0<i<k\2.

In the first case, Z.Yzl = Xxzl+, = Xxi/2, and in the second case Z.x?, =

[ZXJ21 and XX,,+, = lXxt\2]. ❑

LEMMA 3.3. LetxO,..., x~_l andy(,,.. . . y~ _, be arbitra~ sequences ha[’itzg

the step property. If ~~j~x[= Z~If~ y,, then Xl = y, for all O < i < k.

PROOF. Let m = Z.x, = Zyt. By Lemma 2.2, Xl = y, = ~(nt – i)/Ll. ❑

LEMMA 3.4. Let x (]>. ... xL_l andytl, . . . , y~ _, be arbitrary sequences ital ing

the step proper~. If Z~lJxl = ~~j~ yi + 1, then there exists a unique j, O < j < k,

such that xl = y] + 1, and x, = y, for i # j, O s i < k,

PROOF. Let rn = Zxt = Zy, + 1. By Lemma 2.2, XL = [(M – i)/k] and

y, = [(m – 1 – i)/kl. These two terms agree for all i, O s i < k, except for the

unique i such that i = rn – l(mod k). ❑

We now show that the MERGER[W] network preserves the step property.

LEMMA 3.5. If iVlERGER[2 k] is quiescent, and its inputs x,],. ... x~ _, and

x& ..., XL_, both hale the step property, then its outputs y~l, ..., ~lk _ 1 hale the

step property.

PROOF. We argue by induction on log k.

If 2k = 2, MERGER[2k] is just a balancer, so its outputs are guaranteed to

have the step property by the definition of a balancer.

If2k>2,1et z-,),..., Zk. ~ be the outputs of the first MERGER[k] subnet -

work, which merges the even subsequence of x whh the odd subsequence of

x’, and let z{),z~_l be the outputs of the second. Since x and .Y’ have the

step property by assumption, so do their even and odd subsequences (Lemma

3.1), and hence so do z and z‘ (induction hypothesis). Furthermore, X z, =

[Zx,\21 + lZx{/21 and)lz~ = lZx,/2] + [Xx{/21 (Lemma 3.2). A straightfor-
ward case analysis shows that Xzi and ~z~ can differ by at most 1.

We claim that O <y, – yj s 1 for any i <j. If Zz, =)lz~, then Lemma 3.3

implies that z, = z; for O s i < k/2. After the final layer of balancers,

Y, – Yj = zL1/2] – z[J/2],

and the result follows because z has the step property.

Similarly, if Xz, and Zz~ differ by one, Lemma 3.4 implies that z, = z: for

O L i < k/2, except for a unique 1 such that z, and z; differ by one. Let

1030 J. ASPN135 ET AL.

n-d z{. zj) = x + 1 and min(z~, z;) = x for some nonnegative integer x. From

the step property on z and z‘ we have, for all i <1, z, = z: = x + 1, and for all

i>l, z, = z: = x. Since Z[and zj are joined by a balancer with outputs Yz, and

YU+ 1> it fOllOWS that .YU = x + 1 and .Y~~+1 = X. similarly? Z, and :; for i + 1
are joined by the same balancer. Thus, for any i < 1, yzl = Yj, +, = x + 1. and

for any i >1, -Y2, = -V2, +, = x. The step property follows by choosing c = 21 + 1

and applying Lemma 2.2. ❑

The proof of the following theorem is now immediate.

THEOREM 3.6. In any quiescent state, the outputs of BITONIC[w] hale the step

property.

4. A Periodic Counting Network

In this section, we show that the bitonic network is not the only counting

network with depth O(logzn). We introduce a new counting network with the

interesting property that it is periodic, consisting of a sequence of identical

subnetworks. Each stage of this periodic network is interesting in its own right,

since it can be used to achieve barrier synchronization with low contention.

This counting network is isomorphic to the elegant balanced periodic sorring

netiork of Dowd et al. [1989]. However, its behavior, and therefore also our

proof of correctness, are fundamentally different.

We start by defining chains and cochains, notions taken from Dowd et al.

[1989]. Given a sequence x = {.xlli = O,..., n – 1}, it is convenient to repre-

sent each index (subscript) as a binary string. A lel’el i chaii~ of x is a

subsequence of x whose indices have the same i low-order bits. For example,

the subsequence x E of entries with even indices is a level 1 chain, as is the

subsequence X“ of entries with odd indices. The A-cochai}z of x, denoted x q,

is the subsequence whose indices have the two low-order bits 00 or 11. For

example, the A-cochain of the sequence Xo, x, is Xo, X3, X4, XT. The

B-cochain x B is the subsequence whose low-order bits are 01 and 10.

Define the network BLocK[k] as follows: When k is equal to 2, the BLocK[k]

network consists of a single balancer. The BLocK[2k] network for larger k is

constructed recursively. We start with two BLocK[k] networks A and B. Given

an input sequence x, the input of A is X4, and the input to B is x‘. Let y be

the output sequence for the two subnetworks, where y ~ is the output sequence

for A and y ~ the output sequence for B. The final stage of the network

combines each y14 and y,B in a single balancer, yielding final outputs ZLI and
z~t+~. Figure 5 describes the recursive construction of a BLOCK [8] network.

The PERIoDIc[2k] network consists of log k BLOCK[2k] networks joined so that

the ith output wire of one is the ith wire of the next. Figure 6 is a PERIODIC [8]

counting network.5

This recursive construction is quite different from the one used by Dowd et

al. [1989]. We chose this construction because it yields a substantially simpler

and shorter proof of correctness.

5Despite the apparent similarities between the layouts of the BLOCK and MERGER networks, there
is no permutation of wires that yields one from the other.

Counting Networks

h

,X1

X2

x,

X4

X5

Xb

x;

Block[8] Block[81

FIG. 5. A BLOCK [8] balancing network.

Ist Block[8] 2nd Block[8] 3(T B10Ck(5]

X. Y 1)

xl y,

x2 y?

x3 y3

x4 y.

x5 Y5

Xb y6

X7 Y7

Periodlc[8]

FIG.6. APE1710mC [8] counting network.

4.1. PROOF OF CORRECTNESS. In the proof, we use the technical

1031

Y“
y,
Y~
Y
Y.
Y.
y.
Y,

lemmas

about input and output sequences presented in Section 3. The following lemma

will serve a key role in the inductive proof of our construction:

LEMMA 4.1. For i >1,

(1) The level i chain of x is a lelel i – 1 chain of one of x’s cochains.

(2) The leuel i chain of a cochain of x is a leuel i + 1 chain of x.

PROOF. Follows immediately from the definitions of chains and co-

chains. ❑

As will be seen, the price of modularity is redundancy, that is, balancers in

lower-level blocks will be applied to subsequences that already have the desired

step property. We therefore present the following lemma that amounts to

saying that applying balancers “evenly” to such sequences does not hurt:

LEMMA 4.2. If x and x‘ are sequences each haling the step property, and pairs

x, and x! are routed through a balancer, yielding outputs y, and y;, then the

sequences y and y‘ each hal~e the step proper~.

PROOF. For any i <j, given that x and x‘ have the step property, O < xl –
:, s 1 and () < Xj – X; s 1 and therefore the difference between any two wires

IS O < xl + x{ – (x, + x;) s 2. By definition, for any i, y, = [(xl + .%{)/21 and

Y; = 1(x, + x:)/21, and so for any i <j, it is the case that Os Y, – Y, s 1 and
O <y: – y; s 1, implying the step property. ❑

1032 J. ASPNES ET AL.

To prove the correctness of our construction for PERIODIC[k], we will show

that if a block’s level z input chains have the step property, then so do its level

i – 1 output chains, for i in {O, . . . , log k – 1}. This observation implies that a

sequence of log k BLOCK[k] networks will count an arbitra~ number of inputs.

LEMMA 4.3. Let BLOCK[2 k] be quiescent witil input sequence x and output

sequence y. If x ~ and X“ both hale the step proper~, so does Y.

PROOF, We argue by induction on log k. The proof is similar to that of

Lemma 3.5.

For the base case, when 2k = 2, BLocK[2k] is just a balancer, so its outputs

are guaranteed to have the step property by the definition of a balancer.

For the induction step, assume the result for BLocK[k] and consider a

BLocK[2k]. Let x be the input sequence to the block, z the output sequence of

the nested blocks A and B, and y the block’s final output sequence. The

inputs to A are the level 2 chains x~~ and .Koo, and the inputs to B are .V‘()

and .r”~. By Lemma 4.1, each of these is a level 1 chain of x 4 or x’]. These

sequences are the inputs to A and B, themselves of size k, so the induction

hypothesis implies that the outputs z ‘i and z 6 of A and B each has the step

property.

Lemma 3.2 implies that O s ~xl~fi – X.I,F() s 1 and O s Z.Y~~ – Zx~)o s 1.

It follows that the sum of A‘s inputs, ~x,~~ + ~x~c’, and the sum of B’s

inputs,)lxz~o + XX,oo, differ by at most 1. Since balancers do not swallow or

create tokens,)lz~ and XZB also differ by at most 1. If they are equal, then

Lemma 3,3 implies that ZJ’l = z[~ = ZZl = Zz, +,. For t <j,

and the result follows because z “{ has the step property.

Similarly, if Zz~ and ZzlB differ by one, Lemma 3.4 implies that z,~ = zl~

for O < i < k, except for a unique 1 such that z[~ and z? differ by one. Let

nmx(zi4, z?) = x + 1 and min(Zlq, Z?) = x for some nonnegative integer x.

From the step property on z~ and z ~, we have, for all i <1, Z;q = z,~ = x + 1

and for all i > 1 Z;q = zl~ = x. Since Z,i and z? are joined by a balancer with

outputs yzl and yzl+ ~, it follows that Yjl = x + 1 and Yz{+ 1 = x. Similarly. Z,J

and Z,B for i + 1 are joined by the same balancer. Thus, for any i <1,

y>, ‘Y2, +1 = x + 1 and for any i > 1, y~l = yzl+, = x. The step property

follows by choosing c = 21 + 1 and applying Lemma 2.2. ❑

THEOREM 4.4. Let BLocK[2k] be quiescent with input sequence x arzd output

sequence y. If all the leljel i input chains to a block hal!e the step proper~, then so
do all the lcl~el i — 1 output cluzins.

PROOF. We argue by induction on i. Lemma 4.3 provides the base case.

when i is 1.

For the induction step, assume the result for chains up to i – 1. Let x be the

input sequence to the block, z the output sequence of the nested blocks A and

B, and y the block’s final output sequence. If i > 1, Lemma 4.1 implies that

every level i chain of x is entirely contained in one cochain or the other. Each

level i chain of x contained in x~ (XB) is a level i – 1 chain of XA (x~), each

has the step property, and each is an input to A (B). The induction hypothesis

applied to A and B implies that the level i – 2 chains of z i and ZB have the

Counting Networks 1033

step property. But Lemma 4.1 implies that the level i – 2 chains of z 4 and z D

are the level i – 1 chains of z. By Lemma 4.2, if the level i – 1 chains of z

have the step property, so do the level i – 1 chains of y. ❑

By Theorem 2.4, the proof of Theorem 4.4 constitutes a simple alternative

proof that the balanced periodic comparison network of Dowd et al. [1989] is a

sorting network.

5. Implementation and Applications

In a MIMD shared-memory architecture, a balancer can be represented as a

record with two fields: toggle is a boolean value that alternates between O and

1, and next is a 2-element array of pointers to successor balancers. A balancer

is a leaf if it has no successors. A process shepherds a token through the

network by executing the procedure shown in Figure 7. In our implementa-

tions, we preassigned processes to input lines so that they were evenly dis-

tributed. Thus, a given process always started shepherding tokens from the

same preassigned line. It toggles the balancer’s state, and visits the next

balancer, halting when it reaches a leaf. The network’s wiring information can

be cached by each process, and so the transition time of a balancer will be

almost entirely a function of the efficiency of the toggle implementation.

Advancing the toggle state can be accomplished either by a short critical

section guarded by a spin lock,(’ or by a read-modifi-write operation (rmw. for

short) if the hardware supports it. Note that all values are bounded.

We illustrate the utility of counting networks by constructing highly concur-

rent implementations of three common data structures: shared counters,

producer/consumer buffers, and barriers. In Section 6, we give some experi-

mental evidence that counting network implementations have higher through-

put than conventional implementations when contention is sufficiently high.

5.1. SHARED COUNTER. A shared counter7 is a data structure that issues

consecutive integers in response to i?zcrement requests. More formally, in any

quiescent state in which m increment requests have been received, the values O

to m – 1 have been issued in response. To construct the counter, start with an

arbitrary width-w counting network. Associate an integer cell c1 with the ith

output wire. Initially, c, holds the value i. A process requests a number of

traversing the counting network. When it exits the network on wire i, it

atomically adds w to the value of c1 and returns c1’s previous value.

Lemmas 2.1 and 2.3 imply that:

LEMMA 5.1. Let x be the largest number yet retained by any increment request

on the counter. Let R be the set of numbers less than x thut hale not been issued to

any incremeilt request. Then

(1) The size oj’ R is no greater than the number of operations still in progress.

(2) Ify G R, then-v > x – wIRI.
(3) Each number m R will be returned by some operation in time A ~d + A,,

where d is the depth of the network, A is the maximum bidancer delay, and A,

is the maximum time to update a cell OH all output wire.

“A spin lock is just a shared Boolean flag that is raised and lowered by at most one processor at a

time, while the other processors wait.
7For examples. scc Frcudenthal and Gottheb [1991]. Ellis and Olson [1988], Gottlieb et al. [l~ssl,
and Stone [1984].

1034 J. ASPNES ET AL.

balancer= [toggle: boolean, next: array (O..l] ofptrtobalancer]

traverse(b: balancer)

loop until leaf(b)
i := rmru(b.toggle := - b.toggle)
b := b.next[i]
end loop

end traverse

FIG. 7. Code for traversing a balancing network.

5.2. PRODUCER / CONSUMER BUFFER. A producer/consumer buffer is a data

structure in which items inserted by a pool of m producer processes are

removed by a pool of m consumer processes. The buffer algorithm used here is

essentially that of Gottlieb et al. [1983]. The buffer is a w-element array

buff[O . . w – 1]. There are two w-width counting networks, a prodzfcer net-

work, and a consumer network. A producer starts by traversing the producer

network, leaving the network on wire i. It then atomically inspects bufl[i], and,

if it is 1. , replaces it with the produced item. If that position is full, then the

producer waits for the item to be consumed (or returns an exception). Simi-

larly, a consumer traverses the consumer network, exits on wire j, and if

buff[j] holds an item, atomically replaces it with L . If there is no item to

consume, the consumer waits for an item to be produced (or returns an

exception).

Lemmas 2.1 and 2.3 imply that:

LEMVIA 5.?. Suppose m producers tz~ld m‘ consumers hal’e entered a pro-

ducer/co?lsumer bufler built out of counting networks of depth d. Assu}?le that the

time to update each buff [i] once a process Ims left the counting t~etwork is

negligible. Then, if r~l < m‘, elery producer leales the netiork in time d~.

Similarly, if m > m‘, elei-y consumer Ieales the network in time dA.

5.3. BARRIER SYNCHRONIZATION. A barrier is a data structure that ensures

that no process advances beyond a particular point in a computation until all

processes have arrived at that point. Barriers are often used in highly-concur-

rent numerical computations to divide the work into disjoint phases with the

property that no process executes phase i while another process concurrently

executes phase i + 1,

A simple way to construct an n-process barrier is by exploiting the following

key observation: Lemma 2.3 implies that as soon as some process exits with

value n, the last phase must be complete, since the other n – 1 processes must

already have entered the network.

We present a stronger result: One does not need a full counting network to

achieve barrier synchronization. A threshold network of width w is a balancing

network with input sequence xl and output sequence y,, such that the follow-

ing holds:
In any quiescent state, IIW,_ , = nz if and only if mw s Xx, < (m + l)w.

Informally, a threshold network can “detect” each time w tokens have

passed through it. A counting network is a threshold network, but not vice-versa.
Both the BLOCK[w] network used in the periodic construction and the

MER~ER[W] network used in the bitonic construction are threshold networks,

Counting Networks 1035

provided the input sequence satisfies the smoothness property. Recall that a

sequence xO, ..., XW_ ~ is smooth if for all i < j, Ix, – x,1 s 1. Every sequence

with the step property is smooth, but not vice-versa. The following two lemmas

state that smoothness is ‘{stable” under partitioning into subsequences or

application of additional balancers.

LEMMA 5.3. Any subsequence of a smooth sequence is smooth.

LEMMA 5.4. If the input sequence to a balancing network is smooth, so is the

output sequence.

PROOF. Observe that if the inputs to a balancer differ by at most one, then

so do its outputs. By a simple induction on the depth of the network, the

output sequence from the balancers at any level of a balancing network with a

smooth input sequence, is a permutation of its input sequence, hence, the

network’s output sequence is smooth. ❑

THEOREM 5.5. If the input sequence to BLOCKIW] is smooth, then BLOCKIWJI

is a threshold network.

PROOF. Let x, be the block’s input sequence, Zi the output sequence of

nested blocks A and B, and y, the block’s output sequence.

We first show that, if yW_, = m, then mw < XX, < (~~z + 1)~. We argue by

induction on w, the block’s width. If w = 2, the result is immediate. Assume

the result for w = k and consider BLocK[2k] in a quiescent state where

y2~_ , = m. Since x is smooth by hypothesis, by Lemma 5.4 so are z and y.

Since yz~ _, and yz~ _ ~ are outputs of a common balancer, YZ~-z is either m or

m + 1. The rest is a case analysis.

If y~~., = ylh.z = m, then zz~_, = zl~_z = m. By the induction hypothesi:

and Lemma 5.3 applied to A and B, mk s XxlA < (m + l)k and mk < ZX,

< (m + l)k, and therefore 2mk s Zx,~ + ~xl~ < 2(WZ + l)k.

If yz~_z = m + 1, then one of z,~ and zl~ is m, and the other is m + 1.

Without loss of generality, suppose Z;q = m + 1 and Z,B = m. By the induction

hypothesis, (m + 1)k s Xx ~~ < (m + 2)k and mk < ZxlB < (m + l)k. Since

x is smooth, by Lemma 5.3, x B is smooth and some element of x B must equal

m, which in turn implies that no element of x ~ exceeds m + 1. This bound

implies that (m + l)k = Xx ,A. It follows that 2mk + k s XX,A + Xx,E < 2(m

+ l)k, yielding the desired result.

We now show that if mw s Zxt < (m + l)w, then yW_, = m. We again

argue by induction on w, the block’s width. If w = 2, the result is immediate.

Assume the result for w = k and consider BLocK[2k] in a quiescent state

where 2nzk s Zx, < 2(m + l)k. Since x is smooth, by Lemma 5.4 m < y21_ 1.

Furthermore, since x is smooth, by Lemma 5.3, either mk < Xx; s (m + l)k

and rnk s Xx,B < (m + l)k or vice versa, which by the induction hypothesis

implies that z~_, + z$_, < 2nz + 1. It follows that yz~ _ ~ < m + 1, which

completes our claim. ❑

The proof that the MERGER[w] network is also a threshold network if its

inputs are smooth is omitted because h is almost identical to that of Theorem

5.5. A threshold counter is constructed by associating a local counter c, with

each output wire i, just as in the counter construction.

We construct a barrier for n processes, where n = Omod w, using a width-w

threshold counter. The construction is an adaptation of the “sense-reversing”

1036 J. ASPNES ET AL.

barrier construction of Hensgen et al. [1988] as follows: Just as for the counter

construction. we associate a local counter c, with each output wire i. Let F be

a Boolean flag, initially false. Let a process’s phase at a given point in the

execution of the barrier algorithm be defined as O initially, and incremented by

1 every time the process begins traversing the network. With each phase the

algorithm will associate a sense, a Boolean value reflecting the phase’s parity:

true for the first phase, false for the second, and so on. As illustrated in Figure

8, the token for process P, after a phase with sense ,s, enters the network on

wire P mod w. If it emerges with a value not equal to n – 1 mod n, then it

waits until F agrees with s before starting the next phase. If it emerges with

value H – 1 mod n, it sets F to s, and starts the next phase.

As an aside, we note that a threshold counter implemented from a BLOCK[k]

network can be optimized in several additional ways. For example, it is only

necessary to associate a local counter with wire WI — 1, and that counter can be

modulo ~~ rather than unbounded. Moreover, all balancers that are not on a

path from some input wire to exit wire w – 1 can be deleted.

TEIEORE~ 5.6. If P exits the network with Lalue n after completing phase ~,

then elwn other process has completed phase q5, and no process ha,s started phase

(#)+1.

PROOF. We first observe that the input to BLOCK[WI] is smooth, and there-

fore it is a threshold network. We argue by induction. When P receives value

L) = n – 1 at the end of the first phase, exactly n tokens must have entered

BIOCKIPV], and all processes must therefore have completed the first phase.

Since the boolean F is still fake, no process has started the second phase.

Assume the result for phase ~. If Q is the process that received value n – 1 at

the cnd of that phase, then exactly g5?ztokens had entered the network when Q

performed the reset of F. If P receives value L = n – 1 at the end of phase

~ + 1, then exactly (~ + l)rz tokens have entered the network, implying that

an additional n tokens have entered, and all FZ processes have finished the

phase. No process will start the next phase until F is reset. ❑

6. Pe@rnumce

6.1. OVERVIEW. In this section, we analyze counting network throughput

for computations in which tokens are eventually spread evenly through the

network. As mentioned before, to ensure that tokens are evenly spread across

the input wires, each processor could be assigned a fixed input wire. Alterna-

tively, processors could choose input wires at random.

The network saturation S at a given time is defined to be the ratio of the

number of tokens ~Z present in the network (i.e.. the number of processors

shepherding tokens through it) to the number of balancers. If tokens are

spread evenly through the network, then the saturation is just the expected

number of tokens at each balancer. For the BITONIC and PERIODIC networks.
S = 2iz/wd. The network is oLeisatLlwzted if S > 1, and undematurated if

s <1.

An oversaturated network represents a full pipeline; hence, its throughput is

dominated by the pcr-balancer contention, not by the network depth. If a

balancer with S tokens makes a transition in time A(S), then approximately

w/2 tokens emerge from the network every A(S) time units, yielding a

Counting Networks 1037

barriero
v := exit wire of tr-aver-se(wire P mod w)

ifv=n–1 (modw)

then F := s

else wait until F = s

end if

s := 7s

end barrier

FIG. 8. Barrier synchronization cocle.

throughput of w/2A(S). A is an increasing function whose exact form depends

on the particular architecture, but similar measures of degradation have been

observed in practice to grow linearly [Anderson 1989; Mellor-Crummey and

Scott 1990]. The throughout of an oversaturated network is therefore maxi-

mized by choosing w and d to minimize S, bringing it as close as possible to 1.

The throughput of an undersaturated network is dominated by the network

depth, not by the per-balancer contention, since the network pipeline is

partially empty. Every 1/S time units, w/2 tokens leave the network, yielding

throughput wS/2. The throughput of an undersaturated network is therefore

maximized by choosing w and d to increase S, bringing it as close as possible

to 1.

This analysis is necessarily approximate, but it is supported by experimental

evidence. In the remainder of this section, we present the results of timing

experiments for several data structures implemented using counting networks.

As a control, we compare these figures to those produced by more conven-

tional implementations using spin locks. These implementations were done on

an Encore Multimax, using Mu1-T [Kranz et al. 1989], a parallel dialect of Lisp.

The spin lock is a simple “test-and-test-and-set” loop [Rudolph 1983] written in

assembly language, and provided by the Mu1-T run-time system. In our imple-

mentations, each balancer is protected by a spin lock.

6.2. THE SHARED COUNTER. We compare seven shared counter implemen-

tations: bitonic and periodic counting networks of widths 16, 8, and 4, and a

conventional spin lock implementation (which can be considered a degenerate

counting network of width 2). For each network, we measured the elapsed time

necessa~ for a 220 (approximately a million) tokens to traverse the network,

controlling the level of concurrency.

For the bitonic network, the width-16 network has 80 balancers, the width-8

network has 24 balancers, and the width-4 network has 6 balancers. In Figure

9, the horizontal axis represents the number of processes executing concur-

rently. When concurrency is 1, each process runs to completion before the next

one starts. The number of concurrent processes increases until all sixteen

processes execute concurrently. The vertical axis represents the elapsed time

(in seconds) until all 22” tokens had traversed the network. With no concur-

rency, the networks are heavily undersaturated, and the spin lock’s throughput
is the highest by far. As saturation increases, however, so does the throughput

for each of the networks. The width-4 network is undersaturated at concur-

rency levels less than 6. As the level of concurrency increases from 1 to 6,

saturation approaches 1, and the elapsed time decreases. Beyond 6, saturation

increases beyond 1, and the elapsed time eventually starts to grow. The other

1038 J. ASPNES Er AL.

v?’?!7-~#t
“\ -m

%
\ K“’0”’’[’”

K Btonfc[t?]

o 10 20

concurrency (num of proc)

FIG. 9. Bitonic shared counter implementations.

networks remain undersaturated for the range of the experiment; their elapsed

times continue to decrease. Each of the networks begins to outperform the

spin lock at concurrency levels between 8 and 12. When concurrency is

maximal, all three networks have throughputs at least twice the spin lock’s.

Notice that as the level of concurrency increases, the spin lock’s performance

degrades in an approximately linear fashion (because of increasing contention).
The performance of the periodic network (Figure 10) is similar. The width-4

network reaches saturation 1 at 8 processes; its throughput then declines

slightly as it becomes oversaturated. The other networks remain undersatu-

rated, and their throughputs continue to increase. Each of the counting

networks outperforms the spin lock at sufficiently high levels of contention. At

16 processes, the width-4 and width-8 networks have almost twice the through-

put of the single spin-lock implementation. Each bitonic network has a slightly

higher throughput than its periodic counterpart.

6.3. PRODUCER / CONSUMER BUFFERS. We compare the performance of

several producer/consumer buffers implemented using the algorithm of Gott-

Counting Networks

120.

100.

80.

$
~ 60.
E.-

40-

20.

0- .

1039

/
Spin-1ock

Perlodic[16]

e Perlodlc[4]

\ Penod!c[8]

/

, I

o 10 20

concurrency (num of proc)

FIG. 10. Periodic shared counter implementations.

lieb et al. [1983], discussed in Section 5. Each implementation has 8 producer

processes, which continually produce items, and 8 consumer processes, which

continually consume items. If a producer (consumer) process finds its buffer

slot full (empty), it spins until the slot becomes empty (full).

We consider buffers with bitonic and periodic networks of width 2, 4, and 8.

As a final control, we tested a circular buffer protected by a single spin lock, a

structure that permits no concurrency between producers and consumers.

Figure 11 shows the time in seconds needed to produce and consume 2Z”

tokens. Not surprisingly, the single spin-lock implementation is much slower

than any of the others. The width-2 network is heavily oversaturated, the

bitonic width-4 network is slightly oversaturated, while the others are undersat-

urated.

6.4. BARRIER SYNCHRONIZATION. Figure 12 shows the time (in seconds)
taken by 16 processes to perform 2 J6 barrier synchronizations. The remaining

columns show BLOCK[k] networks of width 4, 8, and 16. The last column shows

a simple sense-reversing barrier in which the BLOCK network is replaced by a

single counter protected by a spin lock. The three network barriers are equally

fast, and each takes about two-thirds the time of the spin-lock implementation.

1040 J. ASPNES ~r AL.

FIG. 11. Producer/consumer buffer
spin width 2 width 4 width 8

bitonic
implementations.

57.74 17.51 10.44 14.25

periodic 17.90 12.03 19.99

I Spin lock I Barrier 4 I Barrier 8 I Barrier 16

time (seconds) I 62.051 43.53 I 41.271 42.32

FIG. 12. Barrier Implementations,

7. Vmifiing that a Network Coutlts

The “O-1 law” states that a comparison network is a sorting network if (and

only if) it sorts input sequences consisting entirely of zeroes and ones, a

property that greatly simplifies the task of reasoning about sorting networks. In

this section, we present an analogous result: A balancing network having in

balancers is a counting network if (and only if) it satisfies the step property for

all sequential executions in which up to 2’” tokens have traversed the network.

This result simplifies reasoning about counting networks, since it is not

necessa~ to consider all concurrent executions. However, as we show, the

number of tokens passed through the network in the longest of these sequen-

tial executions cannot be less than exponential in the network depth.

We begin by proving that it suffices to consider only sequential executions.

LEMMA 7.1. Lets be a Lalid schedLde of a gilwn balancing network. Thetl the?’e

exists a l!alid sequetltial sc~[edule s‘ such that the rll[mber of tokerls that pass

through each bala?lcer in s and s‘ is eqlud.

PROOF. Let s = S(l p . q . Sl, where St], SI are sequences of transitions. p

and q are individual transitions involving distinct tokens P and Q, and where

““” is the concatenation operator. If p and q do not occur at the same

balancer, then SO. q . p . S1 is a valid schedule. If p and q do occur at the same

balancer, then s,, “ q “p .s~ is a valid schedule, where sj is constructed from s,

by swapping the identities of P and Q. In each case, we can swap p and q

without changing the preceding sequence of transitions so and without chang-

ing the number of tokens that pass through any balancer during the execution.

Now suppose that s is a complete schedule. We will transform it into a

sequential schedule by a process similar to selection sorting. Choose some total

ordering of the tokens in s. Split s into SO“ tO where SU is the empty sequence

and tO = s. Now repeatedly carry out the following procedure that constructs

Sti- 1 -t from Si . t,: while t, is nonempty, let p be the earliest transition in t,1+1

whose token is ordered as less than or equal to all tokens in t,.Move p to the

beginning of t,by swapping it with each earlier token in t,as described above,

and let s,+ ~ = s, p and t,+,be the suffix of the resulting schedule after p.

This procedure is easily seen to maintain the following invariant:

(1) After stage i, St . t, is a valid schedule in which each balancer passes the

same number of tokens as in s.

(2) After stage i, s, is sorted by token.

Thus, when the procedure terminates, we have a valid sequential schedule s‘

in which each balancer passes the same number of tokens as in s. ❑

Counting Networks 1041

THEOREM 7.2. A balancing network with n~ balancers satisj7es the step property

in all executions if (and only if) it satisfies it in all sequential executions in which

at most 2 ‘“ tokens tralerse the network.

PROOF. Since the step property depends only on the number of tokens that

pass through the network’s output wires, it follows from Lemma 7.1 that a

balancing network satisfies the step property in all executions if (and only if) it

satisfies it in all seq14ential executions.

We now show that any failure to satisfy the step property can be detected in

some execution involving at most 2 ‘n tokens. Consider sequential executions of

a balancing network with m balancers. Any quiescent state is characterized by

specifying for each balancer the output wire to which it will send the next

token, yielding a maximum of 2’” distinct quiescent states. In a sequential

execution, each time a token traverses the network, it carries the network from

one quiescent state to another. Thus, in any execution, after at most 2“’

traversals, the network must reenter its initial state. Let H be the shortest

sequential execution needed to detect a violation of the step property. If H

involves more than 2 ‘“ tokens, then H can be split into a prefix Ho and a suffix

HI such that HO involves at most 2 ‘“ tokens and leaves the network in

its initial state. If H~, sends “illegal” numbers of tokens through two output

wires, then Ho alone suffices to detect the violation, and otherwise HI alone

suffices. ❑

How tight is this bound? We now construct a balancing network that is not a

counting network, yet satisfies the step property for any execution in which the

number of tokens is less than exponential in the network depth. Through the

remainder of this section, we will only consider networks in quiescent states, so

that we can ignore issues of timing and concentrate solely on the total number

of tokens that have passed along each wire.

First. consider the following balancing network STAGE[2 w]. Take two count-

ing networks A and B of width w having outputs wires aO through a,,, _, and

b(~ through b,, _ ~. respectively. Add a layer of w balancers such that the ith

balancer has inputs a, and b,,,_, _i and outputs aj and b~v_, _,. The resulting

network STAGE[2W] is not a counting network; however, it is easily extended to

one by virtue of the following lemma.

LEMMA 7.3. For any input to STAGE [2 w], there exists a permutation rr<, of the

output sequence u{], ..., a~, _, and a perr.nutation n-b of the output seqLLetlce

b{),..., b;,,_l such that the sequence T,,(a{,, a{v_ ~)“ n-~(b~,..., bJv_,) has the
step prope~.

PROOF. Observe that the total inputs to any two balancers in the last layer

differ by at most 1.

Thus, there is always a k such that every balancer in the last layer outputs

either k or k + 1 tokens. If k is even, then b; = k/2 for all i and a; = al +

b – k/2, which is either k/2 or k/2 + 1.One can obtain a sequenceW-1-l

with the step property by setting mti to sort the values in cl’. If k is odd, then

each a: is (k + 1)/2 and each bj is aW_ ~_, + b, – (k + 1)/2, which will be

either (k + 1)/2 or (k + 1)/2 – 1. In this case, having n-~ sort the values in

b‘ produces the desired result. ❑

1042 J. ASPNES ET AL.

By Lemma 2.2 it follows that

COROLLARY 7.4. For any m tokens input to STAGE [2 w 1, ~T.-(FaL
= Z~:,l(m – i/2wl ami ~:,~bj = Z?!; ‘[m – i/2wl.

In other words, the total number of tokens that end up on the aj, ..., LZL- I

and b~, b~._l outputs wires is the same as in a proper counting network. In

fact, Lemma 7.3 guarantees an even stronger property: the actual number of

tokens on each wire correspond to the number of tokens that occur on some

wire in the output sequence of a proper counting network. However, there is

no guarantee that these numbers appear in the correct order (or even the same

order given different inputs). Because of Theorem 2.6, we can extend the

STAGE[2 w] network into a (not very efficient) counting network by passing the

outputs a~,a~. _[and b{l bl. –l to two separate balancing networks

isomorphic to sorting networks. But we are not interested in getting a working

counting network; instead we will use a modified version of STAGE[2 w] to

construct a balancing network that counts all input sequences with up to some

bounded number of tokens, but fails on sequences with more tokens.

We construct such a balancing network (denoted ALMOST[2 w]) as follows:

Take a STAGE[2W] network and modify it by picking some x other than O or

w – 1 and deleting the final balancer between aX and bW_ ~_X. Denote this

balancing network as STAGE ‘[2 WI]. Let ALMOST[2 W] be the period network

constructed from k stages, for some k > 0, each a STAGE ‘[2 w] network, with

the outputs of each stage connected to the inputs of the next.

Let A, and B, be the sums of the number of tokens input to each of the two

subnetworks A and B in the tth stage of ALMOST[2 w]. A ~,and BO are thus the

numbers of tokens input to A and B, respectively. Let y = {Y(l, ..., yzW_ 1} be

the sequence given by yi = [(A,, + BO – i)/2wl. Thus, Y, counts the number

of tokens that would exit on output wire i if ALMOST[2k] were a counting

network.

We now define the quantities A. and B. used in the proofs below. They

measure the number of tokens that would have come out of the respective

parts of network in the last stage (t = ~) if it were a counting network.
Formally, let Ax = ~~=-{jy{, and B. = ~~!,j ‘Y,. Note that A, + B, =A() +
B,l = Ax + B. for all t and that by Lemma 2.2, [(A,. – i)/wl = Y, and

[(BX – i)/wl =yW+, for all i.

Finally, let the imbalance 8, = At – A% = – (B, – B.); this quantity repre-

sents “how far” the network is from balancing the tokens between the A and

B subnetworks in stage t, in other words, how many excess tokens must be

moved from the A part of the network to the B part (or, if the quantity is
negative, how many tokens should be moved from 1? to A).

The following lemma follows from arguments almost identical to those of

Lemma 5.4:

LEMMA 7.5. If the input sequence to a balancing network has the step property,

then so does the outplLt sequence.

LEMMA 7.6. In the output seqzlerzce of stage t of ALMOST[2 w], each al is equal

to y, + e,, where e, s O when S, < 0, and e, 2 ~ w~~en ~, ~ Q and eac~l b, is
< 0 when St > 0, and e, > 0 when ~r < 0.equa[to yW+ ~ + e., h,. where e, —

Counting Networks

PROOF. For i <

1043

w, we have

ei=cz–yt

‘rA:i)lH(Axii)l——[‘s’+:x-i)lH(A”:i)l
which is at least zero when S > 0 and at most zero when 8 < 0.

The claim for eW+, = b, – yW,, follows by a similar argument. ❑

COROLLARY 7.7. If 8, = O, then the outpLLt sequences of stage t of ALMOST[2 W]

have the step propezly.

PROOF. If 8, = O, then, by the preceding lemma, each a, = y, and b, = y,,,,,,

so the output sequences of stage t form the sequence y. Since y has the step

property, it is left unchanged by the final layer of balancers (Lemma 7.5). ❑

LEMMA 7.8

1

[(A, -x)/w] - [(~, - (W -1 -x))/’wl
8t+l=

2 1

PROOF. If a balancer were placed between a; and b{v_, _,, after stage t,

then the STAGE’[2 w] network would become a STAGE[2 w] counting network,

and by Corollazy 7.4, exactly AZ tokens would emerge from the A half of the

network after stage t + 1, giving an imbalance would be O. The above quantity

at+ 1 is simply the number of tokens that this balancer would move from the A

part of the network to the B part in order to bring the parts into balance, and

is thus the actual imbalance that results from deleting the balancer. ❑

The following lemmas show that the imbalance tends toward zero as more

stages are added:

LEMMA 7.9. If 8, >0, then 8,+ ~ >0. If 8, s O, therz 8,+, s O.

PROOF. Suppose at z O. Then A, > A. and B, s B=, and so

1

[(A, -x)/wl - [(B, - (W -1 -x))/w]
8f+l =

2 I

-1

> [(A. –x)/wl – [(B= - (W – 1 –x))/wl

2 I

= o.

(The last equality holds because when the two parts ~f the network hold A.

and B. tokens there is no imbalance.)

Reversing the inequalities gives the corresponding result for 8, <0. ❑

LEMMA 7.10. i’f 18,1>0, then 18,+11 s 18,1 – 1.

PROOF. By virtue of Lemma 7.9, we need only show that 8 decreases when

positive and increases when negative.

1044 J. ASPNES ET AL.

LetaO,.. ,,aW_l, bU,. . ., b,ti_, be the outputs of the A and B subnetworks of

the (t + l)th stage before the last layer of balancers. Because 8, + O, this

sequence does not have the step property; however, each of the two subse-

quences a(l,aW. _l and be, ..., bW_, is the output of a counting network and

so has the step property. Thus, the step property of the whole sequence must

be violated by some al, b] such that a, – b] is either less than O or greater

than 1.

We consider two cases, depending on the sign of 8,:

Case 1. 8, <0. Then, by Lemma 7.6, each al < J’, and each b, > yW,+,.

(Recall that y, is the number of tokens that would exit from the i-th output of

a counting network with the same input sequence.) So for each at and each b,

we have, using the step property of the y sequence. a, < y, < y,, +, + 1 s b, + 1.

Thus:

(1) For each a, and b,, _, .,, at < b,, _,_, + 1, so the balancer between these
outputs moves no tokens from the A side to the B side.

(2) Given some a, and b, that violate the step property, it cannot be the case
that a, > b, + 1 and thus it must be the case that a, < b,. But then

u~t,– 1 S al < b] s btl, and since a}. _, and b(, are connected by a bakmcer,
that balancer moves at least one token from the B side to the A side.

Hence, at least one token moves from the B side to the A side and

a,+, > 8,.

Case 2. S, >0. Then, each a, > y, and each b, < y,,, +,. So a, > y, > y,,+,
> b,. Thus:

(1) For each a, and bW_l_l, a, > bW_l_,, so no final-stage balancer moves

tokens from the B side to the A side.

(2) Given some a, and b, that violate the step property, it must be the case
that a, > b, + 2. But aO > a, > b, + 2> b,v_l + 2; so the balancer be.

tween aO and b,, _ ~ moves at least one token from the A side to the B side.

Hence, at least one token moves from the A side to the B side and

8~+, <t$. ❑

PROOF. From Lemma 7.8, we have:

1[(A, -x)/wl - ((B, - (w -1 -x))/wI]
8t+l=

2 1°

Looking more closely at the B, term, notice that

[‘-(w~l-x)l=[B+:+ll-l
If (1? + x + 1)/w is not an integer then this is just [(B + x + 1)/w J, which is

equal to [(B + x)/w] since subtracting 1 from the numerator cannot bring it

below the next integral multiple of w. Now if (B + x + 1)/w is an integer, then

this is [(B + x + 1)/wl – 1, which in this case is equal to [(B + .x)/w], since

Counting Networks 1045

subtracting 1 from the numerator does bring it below an integral multiple of w.

So in either case, we have

[

~_(w;l-x),=,B;x,,

and we can rewrite the original expression as:

1

[(A, -x)\w] - [(B, +X)/W]
6t+l= 2

‘1(~, –x)/w – (B, +X)\W + Cl

2 I

A, – B,
:+; –c2

2W– W

28, + (AX –Bz)
,— :+:–c?,

2W ‘w

where O s c1 <2 and O s c: < 1. Using the fact that O < A. – B. < w (hence
O s (Ax – Bx)/2w s 1/2), and that O < x s w – 1 (hence, 1/2 < –x/w <

O), we can rewrite all of the terms not containing 8 as a single value c and get

13,
8t+l = —+C,

w

where the bound – 3/2 < c < 3/2 is obtained by summing the bounds on the

individual terms. ❑

THEOREM 7.12. Let w be a power of 2 greater than 1. Then there exists a

width-2 w balancing network that has the step property in all executions with up to

W(h -‘~ tokens, yet is tzot a counting network.

PROOF. From Lemma 7.11, we have 181+~I < 18J\w + 3/2. Let U(t) be

defined by the recurrence U(O) = 16.1, U(t + 1) = U(t)/w + 3/2; then, U(t) is

a strict upper bound on 18,I for t > 0. Solving the recurrence using standard

methods yields

(3/2) (3/2)
u(t) = 1801M-’ +

M

–[

l–1/w– W–lw “

Now suppose the network is given an input involving at most w’ tokens.

Then 180I cannot possibly exceed w’, and after t stages.

(3/3 (3/’2) _,
18,[< u(f) <1 +

()l–1/w– W–lw ‘

which is at most 4 if w > 2 and t > 1. So by Lemma 7.10, 18,+ ~1 = O, and thus,
by Corolla~ 7.7, the outputs of stage t + 4 have the step property. Thus, a

network with k = t + 4 stages will count up to W(k – ~) tokens.

To see that this k-stage network is not a counting network, suppose 180I >
4w(k+1). From Lemma 7.11, we have 18,+11 > 18 J/w – 3/2. Let L(t) be de-

1046 J. ASPNES ET AL.

fined by L(O) = 1801 and L(t + 1) = L(t)\w – 2; L(t) is a strict lower bound

on Iat I for t > 0. Solving the recurrence gives

(3/2) (3/2) _,
L(f) = 1801M-’ – +

1 – l/w (1
—w.
w–1

Dropping the last term and setting 1801> 4W’[L+]) gives

(3/’2)
laL+,l>L(k+l)>4– >1.

1 – I/w’

Since 8A+, # O, the outputs of stage k (and hence the entire network) cannot

have the step property. ❑

8. Discussion

Counting networks deserve further study. We believe that they represent a

start toward a general theory of low-contention data structures. Work is

needed to develop other primitives, to derive upper and lower bounds and new

performance measures. We have made a start in this direction by deriving

constructions and lower bounds for linearizable counting networks [Herliny et

al. 1991], networks that guarantee that the values assigned to tokens reflect the

real-time order of their traversals. Aharonson and Attiya [1992], Felton et al.

[1993], and Hardavellas, et al. [1993] have investigated the structure of counting

networks with fan-in greater than two. Klugerman and Plaxton [19xx] have

shown an explicit network construction of depth O(c[”~ “log n) for some small

constant c, and an existential proof of a network of depth CKlog ~z).

Work is also needed in experimental directions, comparing counting net-

works to other techniques, for example, those based on exponential backoff

[Agw-wal, and Cherian 1989], and for understanding their behavior in architec-

tures other than the single-bus architecture provided by the Encore. We have

made a start in this direction by comparing the performance of counting

networks to that of known methods using the ASIM simulator of the MIT

Alewife machine [Herlihy et al. 1992]. Preliminary results show that there is a

substantial gain in performance due to parallelism on such distributed memory

machines.

Finally, we point out that smoothing networks, balancing networks that

smooth but do not necessarily count, are interesting in their own right since

they can be used as hardware solutions to problems such as load balancing (cf.

[Peleg and Upfal 1986]).

ACKNOWLEDGMENTS. Orli Waarts made many important remarks. The serial-

ization lemma and the observation that smoothing + sorting = counting, are
products of our cooperation with her ~nd with Eli Gafni, to whom we are also

in debt. Our thanks to Heather Well, and Shanghua Teng for several helpful

discussions, to Cynthia Dwork for hcr comments. and to David Kranz and

Randy Osborne for Mu1-T support, and to the helpful yet anonymous referees.

Finally, the first and third authors wish to thank David Michael Herlihy for

remaining quiet during phone calls.

REFERENCES

AG~RW~L, A , ~ND CHERIAN, M 1989. Adaptive backoff synchronization techniques. In F’ro-

cwdings of the 16th Symposium oiz Computer .4rclzitccture (June). IEEE Computer Society Prcxs,
Los Alamitos, ~~lit., pp. 396–406.

Counting Networks 1047

AGARWAL, A., CHAIKEN, D., D’SOUZA, G., JOHNSON, K., KRANZ, D., KUBIATOWICZ, J., KURIHARA,

K., LIM, B.-H., MAA, G., NUSSBAUM,D., PARKIN,M., AND YOUNG, D. 1991. The MIT alewife

machine: A large-scale distributed-memory multiprocessor. In Proceedings of Workshop O)Z

Scalable Shared Memo;v Multiprocessors. Kluwer Academic Publishers. (An extended version of

this paper has been submitted for publication, and appears as MIT/LCS Memo TM-454, 1991.)

AHARONSON, E., AND ATTIYA, H. 1992. Counting networks with arbitrary fan-out. In Proceezl-

irz~s of tlze 3rd SjwIposiZwz on Discrete A lgorithnzs (Orlando, Fla., Jan. 27–29). ACM-SIAM, New

York, pp. 104-113.

AJT.AI, M., KOML6S, J., .AND SZEMER6DI, E. 1983. An 0(n log n) sorting network. In Proceed-

ings of tlze 15tlz ACM Sytnposizmz OIZ the Tlzeozy of Computing. (Boston, Mass., Apr. 25–27).

ACM, New York, pp. 1-9.

ANDERSON, T. E. 1989. The performance implications of spin-waiting alternatives for shared-

memory multiprocessors. Tech. Rep. 89-04-03. Univ. Washington, Seattle, Wash.

ASPNIS, J., HERLIHY, M. P., AND SI+AVIT, N. 1991. Counting networks and multi-processor

coordination. In Proceedings of the 23rd Annual Symposium on Theo~ of Computmg, New

Orleans, La., May 6-8). ACM, New York, pp. 348-358.

BATC1iER, K. E. 1968. Sorting networks and their applications. In Proceedazgs of AFZPS .loirzt

Computer Conference 32, 338–334.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST, R. L. 1990. Zntroductio}t to Algorit}zms. MIT

Press, Cambridge, Mass.

DOWD, M., PERL, Y., RUDOLPH, L., AND SAKS, M. 1989. The periodic balanced sorting network.

J. ACM 36, 4 (Ott), 738-757.

ELLIS, C. S., AND OLSON, T. J. 1988. Algorithms for parallel memory allocation. ./. Parallel

Progr. 17, 4 (Aug.) 303-345.

FELTON, E. W., LAMARC~, A., AND LADNER, R. 1993. Building counting networks from larger

balancers. Tech. Rep, 93-04-09. Univ. Washington, Seattle, Wash.

FREUDENTHAL, E., .AND GOTTLIEB, A. 1991. Process coordination with fetch-and-increment. In

Proceedazg.s of t/Le 4th [nter~zatiotzal Conference o~t A rdlitectuw Suppoti jor Progranznzitzg Lan -

gzuzges and Operating Sjstenzs, (Santa Clara, Calif., Apr.).

GAWLICX, D. 1985. Processing “hot spots” in high performance systems. In Proceedi/zgs of

COMPCON”85. IEEE, Los Alamitos, Cahf.. pp. 249-251.

GOODM4N, J., VERNON, M., ANLZ WUEST, P. 1989. A set of efficient synchronization primitives

for a large-scale shared-memory multiprocessor. In Proceedings oj the 3rd International Confer-

ence on Archltecturcd Support jor Progrwnnurzg Langazzges and Operating Systems (Apr.). ACM.

Ncw York, pp. 64-77.

GIXTLIEB, A., GRISHMAN, R., KRUSKJW, C. P., MCAULIFFE, K. P., RUDOLPH, L., .AND SNIR, M.

1984. The NYU ultracomputer—Dcsigmng an mimd parallel computer. IEEE Trans. Conzput-

crs C-32, 2 (Feb.), 175–189.

GOrT.IEZ~, A., LUBACHEVSIO, B. D., .ANZI RUDLOPH, L. 19S3. Basic techniques for the efficient

coordination of very large numbers of cooperating sequential processors. ACM Trans. Prog.

Lcwg. Syst. .$, 2 (Apr.), 164-189.

HARDAVH.L,AS, N., KARAKOS, D., AND MAVRONICOLAS, M. 1993. Notes on sorting and counting

networks. In Proceedings of WDA G’93. to appear.

H~NSGEN, D., FINKEL, R., AND MANBER, U. 1988. Two algorithms for barrier synchronization.

Int.J. Para. Prog. 17, 1, 1-17.

HISRI.IHY, M. P., LIM. B. H. ,+ND SH~vrr, N. 1992. Low contention load balancing on kuygc-scale

mult iproccssors. In Proceedings of the Ah Annz{al A CM Synrposiwn on Parallel Algorithnzs arul

.4rchzrecrares, (San Diego, Calif., June 29–July 1). ACM, New York, pp. 21 9–222.

H~RLIHY, M. P., SH,+VIT, N., AND W&\RTs. O. 1991. Low-contention Iinearizable counting. In

Proceeding of’ dze 3M IEEE Synzposianr on Fourzdarions of Compawr Science (Oct.) IEEE, New

York, pp. 526-535,

KR~NZ, D., HALSTEAD, R., AND MOHR, E. 1989. MuI-T, A high-performance parallel LNp. In

Procccdazg.s of the ACM SIGPLAN ’89 Cotzferetzce on Programnzing Language Deszgn mzd

[ttzplet?te}ttat~o)z, (Portland, Ore., June 21-23). ACM, New York, pp. 81-90.

K~USKAL, C. P., RUDOLPH, L., AND SNIR, M. 1986. Efficient synchronization on multiprocessors

wit h shared memory. In Hoc eedirlg.s of the 3t/z,4 CM SrGA CT-SIGOPS Sympmiunz OTZI’ruzc iplcs

oj Dtstnbuted Cottzpufitzg, ACM. New York, pp. 2 18–228.

KLU~~RMAN, M. AND PL.&x-roN, C. G. 1992. Small-depth counting networks. In Proceedifig.s of

the 24t/z A/z?zual $wzposiurn on the Theory of Conzputmg. (Victoria, B.C., Canada, May 4–6).
ACM, New York, pp. 417-428.

1048 J. ASPNES ET AL.

L~NcH, N. A., J,NCI TUTr@ M. R. 1987. Hierarchical correctness proofs for distributed

algorithms. In Proceedings cf the 6t}l ACM Symposuun on Principles of Dcstnbutcd Compating

(Vancouver, B. C., Canada, Aug. 10-12). ACM, New York, pp. 137-151 .(Frrll version available
as MIT Tech. Rep. MIT/LCS/TR-387.)

M~IJ OR-CROMMEY, J. M., 4ND Scorn, M. L. 1990. Algorithms for scalable synchronization on

shared-memory multiprocessors. Tech. Rep. 342. Unw. Rochester, Rochester, N.Y. (Apr.).

RUDOLPI L L. 1983. Dccentrallzed cache scheme for an MIMD parallel processor, In Proceed-

[rzs.s of tlw 1 ltll A tmatrl Computing Arc hitec tzlre Conference. pp. 340–347.

MELI.OR-CR~MMEY, J. M., AND SCOTT, M. L. 1991, Synchronization without contention. In

Proceedmgv of the 4th Intematwnal Conference on Architectlwe Support for Prograrnmmg Latl -

gaages and Opcratzng Systenzs (Santa Clara, Cal if.. Apr.) ACM, New York, pp. 269-278.

PELE~, D., AND UPFAL, E. 1986. The token distribution problem. In Proccedmg.s of the 27t}z

IEEE Syt?lposuun on Foundations of Computer Science (Oct.). IEEE, New York.

P~TSTER, G. H., ET AL. 1985. The IBM research parallel pmccssor prototype (RP3): Introduc-

tion and architecture. In Proccedzng.s of the I~ltcmutlotzal Cotlference on Parallel Processing.

Pmsrt+?, G. H., AND NORTON, A, 1985. ‘Hot spot’ contention tind combmmg m multistage

mterconnectmn networks. IEEE Trans. Corrrput. C-34. 11(Nov.), 933–938,

STON~, H. S. 1984. Database applications of the fetch-and-add instruction. IEEE 7’rans

Conqru[. C-33, 7 (July), 604-612.

Vrsl lHN, U. 1984. A parallel-des]gn distributed-implementation (PDDI) general purpose com-

puter. Theorct. C’ot)tpat. Sci. 32, 157-172.

RFC’EIVED JUNE 1985; RE\ISED MARCH 1992: ,\~~EPT~D MA1 1993

Ioumal <,t [h. A,ma.tjm for C<mymt~ng M.u_h, ncrv. Vd 41. No 5, SCptLmlwr IW4

