
EE 1301 UMN

Introduction to Computing Systems Fall 2013

⊕ ⊕

Lab # 1

Due midnight on Sept. 13, 2013

Collaboration is encouraged. You may discuss the problems with other students, but you

must write up your own solutions, including all your C programs, by yourself. If

you submit identical or nearly identical solutions to someone else, this will be considered a

violation of the code on academic honesty.

Submit your assignment by email to your TA as a zipped collection of files called 123456789.zip,

where 123456789 is your student ID. This zipped collection must include:

• A file called goodbye-cruel-world.c

• A file called miles-feet-inches.c

• A file called factorial.c

• A file called perm.c

1. Your first C program.

As tradition would have it, everyone’s very first program is one that prints the greeting

“hello, world.”

include <stdio.h>

int main()

{

printf("hello , world\n");

}

Please see the reference document on the class webpage on how to compile and run

this program.

A C program, whatever its size, consists of functions and variables. A function con-

tains statements that specify the computing operations to be done, and the variables

store the values used during the computation. Normally, you are liberty to give func-

tions whatever names you like, but “main” is special – your program begins executing

at the beginning of main. This means that every program must have a main some-

where.

The first line of the program

EE 1301, Fall ’13 2

#include <stdio.h>

tells the compiler to include information about the standard input/output library.

This includes the printf statement that is use to print out your polite greeting to

the world.

Problem: Write a program that prints out “goodbye cruel world”. Call this program

goodbye-cruel-world.c.

2. A C program that does conversion..

The next program uses the formula ◦C = (5/9)(◦F − 32) to print the following table

of Fahrenheit temperatures and their centigrade equivalents:

#include <stdio.h>

/*

* print Fahrenheit -Celsius table for fahr = 0, 20, ..., 300;

*/

main()

{

float fahr , celsius;

int lower , upper , step;

lower = 0; /* lower limit of temperatuire scale */

upper = 300; /* upper limit */

step = 20; /* step size */

fahr = lower;

while (fahr <= upper) {

celsius = (5.0 / 9.0) * (fahr - 32.0);

printf("%3.0f %6.1f\n", fahr , celsius);

fahr = fahr + step;

}

}

This program introduces several new ideas, including comments, declarations, vari-

ables, arithmetic expressions, loops, and formatted output.

Everything that appears between the symbols /* and */ consists of comments. These

are ignored by the compiler, but they are a crucial part of programming. Comments

are how people (including the author when looking back at his or her own code later)

make sense of what’s written. We’ll emphasize proper commenting throughout the

course.

All variables must be declared before they are used, usually at the beginning of the

function before any executable statements. A declaration announces the properties of

variables; it consists of a name and a list of variables, such as

EE 1301, Fall ’13 3

float fahr , celsius;

int lower , upper , step;

The type int means that the variables listed are integers; by contrast with float,

which means floating point, i.e., numbers that may have a fractional part. C provides

several other data types besides int and float, including:

• char character - a single byte

• short short integer

• long long integer

• double double-precision floating point

Computation in the temperature conversion program begins with the assignment

statements

lower = 0;

upper = 300;

step = 20;

which set the variables to their initial values. Individual statements are terminated

by semicolons. Each line of the table is computed the same way, so we use a loop that

repeats once per output line; this is the purpose of the while loop

while (fahr <= upper) {

...

}

The while loop operates as follows: The condition in parentheses is tested. If it is

true (fahr is less than or equal to upper), the body of the loop (the three statements

enclosed in braces) is executed. Then the condition is re-tested, and if true, the body

is executed again. When the test becomes false (fahr exceeds upper) the loop ends,

and execution continues at the statement that follows the loop. There are no further

statements in this program, so it terminates.

Most of the work gets done in the body of the loop. The celsius temperature is

computed and assigned to the variable celsius by the statement

celsius = (5.0 / 9.0) * (fahr - 32.0);

The printf conversion specification %3.0f says that a floating-point number (here

fahr) is to be printed at least three characters wide, with no decimal point and no

fraction digits. %6.1f describes another number (celsius) that is to be printed at

least six characters wide, with 1 digit after the decimal point.

There are plenty of different ways to write a program for a particular task. Let’s try

a variation on the temperature converter.

EE 1301, Fall ’13 4

include <stdio.h>

/* print Fahrenheit -Celsius table */

main()

{

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20) {

printf("%d %f\n", fahr , (5.0 / 9.0) * (fahr - 32));

}

}

This produces the same answers, but it certainly looks different. One major change

is the elimination of most of the variables; only fahr remains, and we have made

it an int. The lower and upper limits and the step size appear only as constants

in the for statement, itself a new construction, and the expression that computes

the celsius temperature now appears as the third argument of printf instead of a

separate assignment statement. This last change is an instance of a general rule – in

any context where it is permissible to use the value of some type, you can use a more

complicated expression of that type. Since the third argument of printf must be a

floating-point value to match the %6.1f, any floating-point expression can occur here.

The for statement is a loop, a generalization of the while. If you compare it to the

earlier while, its operation should be clear. Within the parentheses, there are three

parts, separated by semicolons. The first part, the initialization

fahr = 0

is done once, before the loop proper is entered. The second part is the test or condition

that controls the loop:

fahr <= 300

This condition is evaluated; if it is true, the body of the loop (here a single printf)

is executed. Then the increment step

fahr = fahr + 20

is executed, and the condition re-evaluated. The loop terminates if the condition has

become false. As with the while, the body of the loop can be a single statement or

a group of statements enclosed in braces. The initialization, condition and increment

can be any expressions.

The choice between while and for is arbitrary, based on which seems clearer. The

for is usually appropriate for loops in which the initialization and increment are single

statements and logically related, since it is more compact than while and it keeps the

loop control statements together in one place.

EE 1301, Fall ’13 5

Problem: Write a program that prints out lengths in miles, feet and inches from 1

to 100 miles. (You crazy Americans with your Imperial system of measures. Don’t

even get me started on ounces per pound and fluid ounces per gallon. . .) Call this

program miles-feet-inches.c. Here’s the first line that it should print out:

1 5280 63360

3. A C program that does some math.

A function provides a convenient way to encapsulate some computation, which can

then be used without worrying about its implementation. With properly designed

functions, it is possible to ignore how a job is done; knowing what is done is sufficient.

C makes the use of functions easy, convenient and efficient; you will often see a short

function defined and called only once, just because it clarifies some piece of code.

Earlier we used the function printf that has been provided for us; now it’s time to

write a few of our own. Since C has no exponentiation operator, let us illustrate the

mechanics of function definition by writing a function power(m,n) to raise an integer

m to a positive integer power n. That is, the value of power(2,5) is 32. This function

is not a practical exponentiation routine, since it handles only positive powers of small

integers, but it’s good enough for illustration. Here is the function power and a main

program to exercise it, so you can see the whole structure at once.

#include <stdio.h>

int power(int m, int n);

/* test power function */

main()

{

int i;

for (i = 0; i < 10; ++i)

printf("%d %d %d\n", i, power(2, i), power(-3, i));

return 0;

}

/* power: raise base to n-th power; n >= 0 */

int

power(int base , int n)

{

int i, p;

p = 1;

for (i = 1; i <= n; ++i)

p = p * base;

EE 1301, Fall ’13 6

return p;

}

A function definition has this form:

return -type function -name(parameter declarations)

{

declarations

statements

}

Function definitions can appear in any order, and in one source file or several, although

no function can be split between files. If the source program appears in several files,

you may have to say more to compile and load it than if it all appears in one, but that

is an operating system matter, not a language attribute. For the moment, we will

assume that both functions are in the same file, so whatever you have learned about

running C programs will still work. The function power is called twice by main, in

the line

printf("%d %d %d\n", i, power(2,i), power(-3,i));

Each call passes two arguments to power, which each time returns an integer to be

formatted and printed. In an expression, power(2,i) is an integer just as 2 and i

are. (Not all functions produce an integer value.)

The first line of power itself,

int power(int base , int n)

declares the parameter types and names, and the type of the result that the function

returns. The names used by power for its parameters are local to power, and are not

visible to any other function: other routines can use the same names without conflict.

This is also true of the variables i and p: the i in power is unrelated to the i in main.

We will generally use parameter for a variable named in the parenthesized list in

a function. The value that power computes is returned to main by the return:

statement. Any expression may follow return.

The declaration

int power(int base , int n);

just before main says that power is a function that expects two int arguments and

returns an int. This declaration, which is called a function prototype, has to agree

with the definition and uses of power.

Problem: Write a program that prints out n! (n factorial) for values of n from 1 to

10. Call this program factorial.c. Here are the first few lines that it should print

out:

EE 1301, Fall ’13 7

1

2

6

24

4. A C program that does some more math.

Modularity is one of the most important concepts in programming. We can define

functions and then call them repeatedly, when needed. In Problem 3, you wrote a

function that computes n!:

int factorial(int n)

Here’s a program that computes the number of combinations: the number of ways

one can choose k objects from among a given set of n objects. It uses the function

that you wrote for Problem 3 (which, obviously, we’re omitting here).

#include <stdio.h>

int factorial(int n);

/* combinations */

main()

{

int i, j;

for (i = 1; i <= 10; ++i) {

for (j = 1; j <= i; ++j) {

printf("%d %d %d\n", i, j,

factorial(i)/(factorial(j) * factorial(i - j)));

}

}

return 0;

}

/* factorial function */

int factorial(int n)

{

/* include it here */

}

Notice here that we have two for loops, with the inner one nested inside the outer

one. The upper bound on the inner loop depends on the index variable from the outer

loop. Here are the first few lines that this program prints out (n in the first column,

k in the second column, the answer in the third column):

EE 1301, Fall ’13 8

1 1 1

2 1 2

2 2 1

3 1 3

3 2 3

3 3 1

4 1 4

4 2 6

4 3 4

4 4 1

5 1 5

5 2 10

5 3 10

5 4 5

5 5 1

Problem: Write a program that prints out the number of permutations: the num-

ber of ways r objects can be chosen from a total of n distinct objects and arranged

in different ways. Call this program perm.c. Here are the the first few lines that it

should print out (n in the first column, k in the second column, the answer in the

third column):

1 1 1

2 1 2

2 2 2

3 1 3

3 2 6

3 3 6

4 1 4

4 2 12

4 3 24

4 4 24

5 1 5

5 2 20

5 3 60

5 4 120

5 5 120

